

MI SYSTEM

BU Installation Systems Installation Technical Manual Technical Data MI System

Version 2.1 10.2018

Terms of common cooperation / Legal disclaimer

The product loading capacities published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products), assuming sufficient fastener, base material and building structure strength. Additional calculations, checks and releases by the responsible structural engineer might be needed to clarify the capacity of base material and building structure. Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve this loading capacity (e.g. misuse, modification, overload, corrosion). As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for any specific facility. This book only serves as an aid to interpret the suitability of structures combining different products for specific applications without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications are only recommendations that need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User's specific jurisdiction and project requirements.

Data version 2.1 I Date 10.2018

Product	Designation	Item number	Page
MI Syster	m girders (channe	els) - section pro	perties
	MI-90 3m MI-90 6m	304798 304799	7 7
-B	MI-120 3m MI-120 6m	304800 304801	7 7
MI System conne	ectors		
3/16" (8) 2-15/16" (75) 5-11/16" (145) 3-3,8" (85) 5-11/16" (145)	MIC-BA	2174677	9
3/16" (6) 2-15/16" (75) 5-11/16" (145) 3-3/8" (85) 5-11/16" (145)	"MIC-BAH	2179532	15
100-76 8-77 192	MIC-90-UH	2179533	23
MI-120	MIC-120-UH	2179534	31
140 75 8 14 5 315	MIC-90-L	304805	39
140 75 8 14 1 315	MIC-90-L-AP	305710	43
	MIC-T	304807	47
	MIC-90-LH	2165050	53
a start and a start	MIC-90-E	304809	57
and the second second	MIC-120-E	304810	61

Installation Technical Manual - Technical Data - MI system

Data version 2.1 I Date 10.2018

Product	Designation	Item number	Page
MI System conr	nectors		
8, 120 130 012.5 00 197.5	MIC-U-MA	304806	65
MI System base	material conne	ctors - concrete	
90 90 10 10 10 10 10 10 10 10 10 10 10 10 10	MIC-C90-AA	304825	69
9-1/16° (230) 5-1/2° (140) Mi-90 11/16° (17.88) 9/16° (15) 11/16° (17.88)	MIC-C90-DH	2174661	73
5-1/2" (140) MI-120 9-1/16" (230) 9/16" (15) 7"(178) 9/16" (15) 7"(178) 9/16" (15) 9/16" (15)	MIC-C120-DH	2174662	77
3-15/16" (100) 41-50 0 0 0 0 0 0 0 0 0 0 0 0 0	MIC-C90-UH	2179535	81
7.78° (200) 1/2° (12.5) 1/2° (12.5) 1/4° (6) 1/4° (6) 1/4° (7) 3-1,8° (80) 1/4° (7) 1/4° (7) 1/4° (7) 3-1,5/1° 1/4° (7) 3-1,5/1° 1/4° (7) 3-1,5/1° 1/4° (7) 3-1,5/1° 1/4° (7) 3-1,5/1° 1/4° (7) 3-1,5/1° 1/4° (7) 1/4°	889 MIC-CU-MAH 20	2174664	87
MI System base	material conne	ctors - structural ste	el profiles
143 13 60x13	MIC-S90-AA	304811	91
5-1/2" (140) M-90 9/16" (140) 11/16">2-1/6" 9/16" (140) 11/16">2-1/6" 11/16">2-1/6" 11/16" 11/16">2-1/6"	MIC-S90-AH	2174665	97
5-1/2" (140) M1-90 9/16" (141) 11/16">9/16" (142) 9/16" (141) 11/16">9/16" (142) 9/16" (142) 11/16" (12)	MIC-S90-BH	2174666	105
5-1/2" (140) MI-90 9/16" (14) 11/10" 22-1/2" (170e4) 11/10" 22-1/2" (170e4)	MIC-S90-CH	2174667	113
5-1/2" (140) Mi-120 9/67 (14) 1/1/5" (12) 9/67 (14) 1/1/5" (12) 9/67 (17) 1/1/5" (12) 9/67 (17) 1/1/5" (12) 9/67 (17) 1/2" (12)	MIC-S120-AH	2174668	121

Data version 2.1 I Date 10.2018

Product	Designation	Item number	Page
MI System base	material connector	s - structural ste	el profiles
5-1/2" (140) - MI-120 9/16" (14) 1/10" - 11/16" - 2/2" (17.864)	MIC-S120-BH	2174669	129
5-1/2' (140)- MI-120 9/16' (14) 11/20 9/16' (14) 11/20 9/16' (14) 11/20 9/16' (14)	MIC-S120-CH	2174670	137
9/16" (14) 1/2" (12) 3-1/6" (90) 1/4" (9) 1/4" (9) 1/4" (9) 1/4" (9) 1/155 8-11/16" (12) 1/155 8-11/16" (12) 1/155 8-11/16" (12)	MIC-SA-MAH	2174671	145
9/16° (14) 1/2° (12.5) 3-18° (90) 1/4′ (9) 3-157° (100) 1/1/15° (115) 3-157° (100) 1/1/15° (115) 1/1/15° 1/1/10	MIC-SB-MAH	2174672	155
8/16" (14) 1/2" (12) 3-1/6" (805 3-1/6" (805 3-1/6" (100) 11/16" 8-1/10" (12) 11/16" 8-1/10" (12)	MIC-SC-MAH	2174673	165
	MI-DGC 90	233860	175
	MI-DGC 120	233861	179
MI System brack	kets - concrete		
	MIC-C90-DH- 500 MIC-C90-DH- 750 MIC-C90-DH-1000 MIC-C90-DH-1500 MIC-C90-DH-2000	2203572 2203573 2203574 2203575 2203575 2203576	183
230 178 20 278 330	MIC-C120-DH- 500 MIC-C120-DH- 750 MIC-C120-DH-1000 MIC-C120-DH-1500 MIC-C120-DH-2000	2203577 2203578 2203579 2203580 2203581	187
MI System brack	kets - structural ste	el profiles	
B 15 155 17,64	MIC-S90-AH- 500 MIC-S90-AH- 750 MIC-S90-AH-1000 MIC-S90-AH-1500 MIC-S90-AH-2000	2203582 2203583 2203584 2203585 2203585 2203586	191
B 15 17/64	MIC-S90-BH- 500 MIC-S90-BH- 750 MIC-S90-BH-1000 MIC-S90-BH-1500 MIC-S90-BH-2000	2203587 2203588 2203589 2203590 2203591	199

Installation Technical Manual - Technical Data - MI system

Data version 2.1 I Date 10.2018

Product	Designation	Item number	Page
MI System bra	ckets - structural stee	l profiles	
B Y 15 15 17/64	MIC-S90-CH- 500 MIC-S90-CH- 750 MIC-S90-CH-1000 MIC-S90-CH-1500 [®] MIC-S90-CH-2000	2203592 2203593 2203594 2203595 2203595 2203596	207
8-1/2° (140) 1/2° (12) 1/10° (14) 1/10° (14) 1/10° (14) 1/10° (17) 1/10°	MIC-S120-AH- 500 MIC-S120-AH- 750 MIC-S120-AH-1000 MIC-S120-AH-1500 MIC-S120-AH-2000	2203597 2203598 2203599 2203600 2203601	215
8-1/2" (140) 10/2" (12) 0/10" (14) 0/10" (14) 0/10" (14) 0/10" (14) 0/10" (14) 0/10" (12) 0/10" (12) 0/10	MIC-S120-BH- 500 MIC-S120-BH- 750 MIC-S120-BH-1000 MIC-S120-BH-1500 MIC-S120-BH-2000	2203602 2203603 2203604 2203605 2203606	223
5-1/2" (140) MI-120 91/9" (14) 11/6"32-1/2" (17)64) 8-11/76" (2)	MIC-S120-CH- 500 MIC-S120-CH- 750 MIC-S120-CH-1000 MIC-S120-CH-1500 MIC-S120-CH-2000	2203607 2203608 2203609 2203570 2203571	231

MI-Girders

Decimenties		life and the second back	-	Yield strength
			1	1.5 Recommended
MI-90 6m		304790	Characteristic load	capacity limit
MI-120 3m		304800		Self weight
MI-120 6m		304801	-	Action Resistance
Technical data			MI-90	MI-120
For girder MI / cross section including torsion			Y	Y Z
Cross-sectional area	A	[mm ²]	 1057.4	1456.24
Channel weight		[kg/m]	9.43	12.64
Material				
yield strength	f _{y,k}	[N/mm ²]	235.0	235.0
permissible stress*	σ_{rec}	[N/mm ²]	167.9	167.9
E-module		[N/mm ²]	210000	210000
thrust-module		[N/mm ²]	81000	81000
Surface				
hot dip galvanized		[µm]	75	75
Cross-section values Y-axis				
Axis of gravity	e _y	[mm]	45.0	60.0
moment of inertia	l _y	[cm⁴]	120.75	280.72
Section modulus	Wy	[cm ³]	26.83	46.79
Radius of gyration	i _y	[cm]	3.38	4.39
Cross-section values Z-axis				
Axis of gravity	e _z	[mm]	45.00	45.00
moment of inertia	ا _z	[cm ⁴]	120.75	181.65
Section modulus	Wz	[cm ³]	26.83	40.37
Radius of gyration	i _z	[cm]	3.38	3.53
Data to the torsion				
torsional moment of inertia	lt	[cm ⁴]	164.82	314.97
torsional section modulus	W _t	[cm ³]	38.82	71.69
Material composition: DD11 MOD	- EN 10111, S235JI	R - EN 10025-2		

Corrosion protection: Hot-dip galvanized, 75 μm - ASTM A123

Installation Technical Manual - Technical Data - MI system

Data version 2.1 I Date 10.2018

Installation Technical Manual - Technical Data - MI system

Designation		lte	m number
МІС-ВА		21	74677
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Toothed Plate	ISO 1461	45	
Backing Plate (Min.)	ISO 1461	45	
Bolt; Nut	ISO 1461	40; 45	

Weight:

2227g incl. components

Description:

Hot dipped galvanized, 90° Hilti MI angle connector, used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \ \frac{N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Possible loading cases		
Standard	Double	

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

Loading case: Standard	Combinations covered by loading case	
Bill of Material for this loading case:For fixation on MI-90 girder1x MIC-BA2174677For fixation on MI-1201x MIC-BA21746771x MIC-BA21746771x MIA-EH120304888MIA-EH90 remains unused	Connector used for Connecting MI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle	

Design loading capacity - 3D	1/2
Method	
Vield sterright Design bad Capacity limit Design bad Limit Action Registrate Action Registrate	
Limiting components of capacity evaluated	d in following tables:
1. Connection system including connector, hardware and affected p	ortion of MI-90 girders, per FEA simulation
	Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	Double	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
9.20	9.70	6.10	6.10	19.60	6.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.28	0.28	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{v.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{v.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Installation Technical Manual - Technical Data - MI system

2/2

2/2

MIC-BA Connector

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Standard	Double	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. 1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation Resistance values for one side of the connection system**

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
8.28**	8.60**	6.10**	6.10**	8.60**	6.03**
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.28**	0.28**	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure Interaction:

```
\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1
```


Designation MIC-BAH		lte 21	m number 79532
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Toothed Plate	ISO 1461	45	
Backing Plate (Min.)	ISO 1461	45	
Bolt; Nut	ISO 1461	40; 45	

Weight:

2227g

Description:

Hot dipped galvanized, 90° Hilti MI angle connector, used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment. Suitable for cantilever applications only when used in Double configuration as defined in the IFU.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \ \frac{N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Possible loading cases					
Standard	Double One Side	Double Both Sides			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

٠	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

Standard	Double One Side	Double Both Sides		
Loading case: S	Standard		Combinations covered b	y loading case
Bill of Material f For fixation on M 1x MIC-BAH For fixation on M 1x MIC-BAH 1x MIA-EH120 MIA-EH90 remai	for this loading ca <u>I-90 girder</u> 217953 <u>I-120</u> 217953 30488 ns unused	se: 2 2 8	Connector used for Connecting MI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle	
Recommend	ed loading cap	acity - simplifie	ed for most common a	pplications
Method Vield strength Permissible streas Characteristic load Staff weight Live load Action Resistar	Pecommended capacity limit co		The cap	± Fx,rec. ± Fy,rec. ± Fz,rec. [kN] [kN] [kN] 8.59 4.07 8.59 ses values are individual one directional maximal acity limits. For any combinations of multiple totons, use design values and their corresponding raction formulas.
Design loadii	ng capacity - 3l	D		1/2
Method	Design load copecity land copecity land co			
Limiting com	ponents of cap	oacity evaluate	d in following tables:	
1. Connection system	n, including connector, I	hardware and affected p	portion of MI-90 girders, per FEA sir	nulation
			Installation Technical Manu	ıal - Technical Data - MI syster

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
12.88	20.80	6.10	6.10	20.80	12.88
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.62	0.62	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

Standard	Double One Side	Double Both Sides	
Loading case: D	ouble One Side		Combinations covered by loading case
Bill of Material for For fixation on M	or this loading ca I-90 girder	se:	Connector used in pair for Connecting MI-90 girder
2x MIC-BAH	217953	2	on either MI-90 or
1xMI-FH90 and	1xMIA-FH-P rem	ain unused	in a 90-degree
For fixation on M	<u>I-120</u>		angle
2x MIC-BAH	217953	2	
1x MIA-TP	305707		
2x MIA-EH120	30488	8	
3xMIA-EH90 and	2xMIA-EH-P rema	ain unused	
Pacammanda	d loading can	acity simplific	d for most common applications

Design loading capacity - 3D	1/2
Method	
Ved shrength Design load Design load Design load Acton Resistance	
Limiting components of capacity evaluated	d in following tables:
1. Connection system, including connector, hardware and affected p	ortion of MI-90 girders, per FEA simulation

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
24.50	28.60	12.20	12.20	34.10	34.10
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.87	1.87	2.10	2.10	1. 16	1. 16

includes cross section resistance of steel plate and contact pressure Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

Standard	Double One Side	Double Both Sides	
Loading case: D	ouble Both Sides	5	Combinations covered by loading case
Bill of Material f For fixation on MI-S 2x MIC-BAH 1x MIA-TP 1x MI-EH90 and M unused For fixation on MI- 2x MIC-BAH 1x MIA-EH120 1x MIA-TP The 2x MIA-EH90	or this loading ca <u>90 girder</u> 2179532 305707 IA-EH-P remain 120 2179532 304888 305707 and 2x MIA-EH-P rer	se:	Connector used in pair for Connecting 2xMI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle

Design loading capacity - 3D	1/2
Method	
Veld strongth Design load Capacity limit 1.5 Live load Actor Resistance	
Limiting components of capacity evaluated 1. Connection system, including connector, hardware and affected p including connector, hardware and affected p	d in following tables:
	Installation Technical Manual - Technical Data - MI syste

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation Resistance values for one side of the connection system**

Designation MIC-90-UH		Ite	m number 2179533
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Toothed Plate	ISO 1461	45	
Backing Plate (Min.)	ISO 1461	45	
Bolt; Nut	ISO 1461	40; 45	

Weight:

•• • • •

2510 g incl. components

Submittal text:

Hot dipped galvanized, 90° Hilti MI angle connector, used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with an oblong hole. Not suitable for cantilever applications.

MI-90	8			92
Hardwa	re inclu	ded per	conne	ctor
	Ĩ	•		8
1x	2x	1x	1x	3x

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \frac{N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Madulus of Electicity and Obser Madul	the same second as the FNI 4000	4 4 and waad fan all Ewaaaad		

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Standard	Double			

Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

Software:

- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Bill of Material for this loading case For fixation on MI-90 girder Angle incl. all components 2179533 1x MIC-90-UH 2179533 For fixation on MI-120 MI-90 girder 1x MIC-90-UH 2179533 1x MIC-90-UH 2179533 1x MIC-90-UH 2179533 1x MIC-90-UH 2179533 1x MIA-EH120 304888 The MIA-EH90 remain unused Image: Connection of MI-90 or MI-120 girder	Loading case: Standard	Combinations covered by loading case		
	Bill of Material for this loading case For fixation on MI-90 girder Angle incl. all components 1x MIC-90-UH 2179533 For fixation on MI-120 1x MIC-90-UH 2179533 1x MIA-EH120 304888 The MIA-EH90 remain unused	Connector used for connecting MI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle		

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.00	Not decisive	14.73	14.73	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.36	1.36	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure Interaction: $F_{x,Ed} = F_{x,Ed} = F_{z,Ed} = M_{x,Ed}$

¹ x.Ed	+ y.Ed	$+ \underline{z.Ed}$	$+ \frac{m_{x.Ed}}{d} < $	1
F _{x.Rd}	^F y.Rd	F _{z.Rd}	M _{x.Rd}	

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	0.00	0.00	0.00	0.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 26

2/3

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. One hand screw -in connection to MIC-90-U and MI90-channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.00	3.00	36.29	36.29	36.29	36.29
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.20	1.20	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90 Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

4. Easy hand screw- in connection MIC-90-U to MI90/120-channel

F_{x.Rd} F_{z.Rd}

Installation Technical Manual - Technical Data - MI system

3/3

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Individual Steel connector

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
3.00	Not decisive	14.73	14.73	63.92	63.92	
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
1.36	1.36	0.00	0.00	0.00	0.00	
nteraction:						

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

2. Individual Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	0.00	0.00	0.00	0.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 29

2/3

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	Double	

Design loading capacity - 3D

3/3

Designation MIC-120-UH		Ite	m number 2179534
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Toothed Plate	ISO 1461	45	
Backing Plate (Min.)	ISO 1461	45	
Bolt; Nut	ISO 1461	40; 45	

Weight:

•• • • •

2786 g incl. components

Submittal text:

Hot dipped galvanized, 90° Hilti MI angle connector, used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with an oblong hole. Not suitable for cantilever applications.

MI-120	100			20
Hardwa	re inclue	ded per	conne	ctor
	Ĩ	0	0	8
1 1	2x	1x	1x	3x

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \frac{N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Madulus of Electicity and Obser Madul	the same second as the FNI 4000	4 4 and waad fan all Ewaaaad		

Values for Modulus of Élasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases			
Standard	Double		

Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

Software:

- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Bill of Material for this loading case For fixation on MI-90 girder Angle incl. all components 1x MIC-90-UH 2179534 For fixation on MI-120 1x MIC-90-UH 2179533 1x MIC-90-UH 2179533 1x MIC-90-UH 2179533 1x MIC-90-UH 2179533 1x MIA-EH120 304888 The MIA-EH90 remain unused Image: Connecting on either MI-90 on MI-120 girder in a 90-degree angle Image: Connecting on MI-120 on MI	Loading case: Standard	Combinations covered by loading case		
	Bill of Material for this loading case For fixation on MI-90 girder Angle incl. all components 1x MIC-90-UH 2179534 For fixation on MI-120 1x MIC-90-UH 2179533 1x MIA-EH120 304888 The MIA-EH90 remain unused	Connector used for connecting MI-120 girder on either MI-90 or MI-120 girder in a 90-degree angle		

Recommended loading capacity - simplified for most common applications

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector

2. Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.60	Not decisive	15.83	15.83	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.14	1.14	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

+Fx,Rd [kN] 336.02 +Mx,Rd [kNm]

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.73	9.73	0.00	0.00	0.00	0.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 34

2/3

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
2.00	2.00	41.47	41.47	41.47	41.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.99	1.99	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

4. Easy hand screw- in connection MIC-90-U to M

90/120-channel						
8	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	2.59	Not decisive	Not decisive	Not decisive	16.99	16.99
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
	Not decisive	Not decisive	0.00	0.00	0.00	0.00

includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \leq 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 35

3/3

Installation Technical Manual - Technical Data - MI system

MIC-120-UH Connector

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Individual Steel connector

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
2.60	Not decisive	15.83	15.83	63.92	63.92	
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
1.14	1.14	0.00	0.00	0.00	0.00	
Interaction:						

F _{x.Ed}	^F y.Ed	F _{z.Ed}	$M_{x.Ed} < 1$
F _{x.Rd}	$+\overline{F_{v.Rd}}$	$F_{r_{z,Rd}}$	$\frac{1}{M_{x.Rd}} \leq 1$

2. Individual Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.73	9.73	0.00	0.00	0.00	0.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

<u>2/3</u>

MIC-120-UH Connector

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

* Explanation how to apply resistance values

 F_{7} , Rd = 9.00 kN

 F_{x} ,Rd = 2.59 kN

 F_{7} , Rd = 9.00 kN

 F_{x} , Rd = 2.59 kN

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
2.00	2.00	41.47	41.47	41.47	41.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.99	1.99	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90 Interaction:

F _{x.Ed}	Fy.Ed	F _{z.Ed}	M _{x.Ed}	1
F _{x Rd}	FyRd	F _{z Rd}	M _{x Rd}	Î

4. Easy hand screw for double connection - resistance values for one connector* in connection MIC-90-U to MI90/120-channel							
A A A A A A A A A A A A A A A A A A A	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
	2.59*	Not decisive	Not decisive	Not decisive	9.00*	9.00*	
×	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
z	Note decisive	Not decisive	0.00	0.00	0.00	0.00	

includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 38

3/3

Designation	m number		
		30	4005
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Toothed Plate	ISO 1461	45	
Backing Plate (Min.)	ISO 1461	45	
Bolt; Nut	ISO 1461	40; 45	

Weight:

4.05kg incl. components

Submittal text:

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with fixed holes instead of an oblong hole. Suitable for cantilever applications.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \ \frac{N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Standard				

Design criteria used for loading capacity

Methodology:

- · Finite element analysis
- Analytic calculation

Standards and codes:

•	EN 1990 03.2003	Basics of structural design	
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Bill of Material for this loading case: For fixation on MI-90 girder Connector incl. all connecting hardware 1x MIC-90-L 304805 For fixation on MI-120 Connector incl. all connecting hardware 1x MIC-90-L 304804 2x MIA-EH120 304888 The MIA-EH90 remain unused

Connector used for Connecting MI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle

Recommended loading capacity - simplified for most common applications

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
14.10	63.30	25.30	25.30	32.00	32.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.95	2.95	1.30	1.30	0.53	0.53

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]		
230.12	230.12	75.53	75.53	75.53	75.53		
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]		
5.64	5.64	3.45	3.45	3.45	3.45		
Interaction:							

 $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

2/2

Hardware included per connector

MIC-90-L-AP Connector

Submittal text:

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with fixed holes instead of an oblong hole. Suitable for cantilever applications.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Madulus of Floatisity and Cheer Madul	up are according to EN 1002	1.1 and used for all Europed	a adaulationa	

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Possible loading cases				
Standard				

Design criteria used for loading capacity

Methodology:

- · Finite element analysis
- Analytic calculation

Standards and codes:

•	EN 1990 03.2003	Basics of structural design	
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Loading case: Standa	aru	Combinations covered by loading case
Bill of Material for this load 1x MIC-90-L-AP Components not included 2x MIA-EH-P 2x M12-F-SL WS3/4 2x MIA-OH90 For fixation on MI-90 girder 2x MIA-EH90 For fixation on MI-120 2x MIA-EH120	ding case: 305710 304891 382897 304889 304887 304888	Connector used for Connecting MI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
14.10	63.30	25.30	25.30	32.00	32.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.95	2.95	1.30	1.30	0.53	0.53

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
230.12	230.12	75.53	75.53	75.53	75.53	
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
5.64	5.64	3.45	3.45	3.45	3.45	
nteraction.						

$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 46

2/2

Designation MIC-T		lte 30	m number 04807
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Toothed Plate	ISO 1461	45	
Backing Plate (Min.)	ISO 1461	45	
Bolt; Nut	ISO 1461	40; 45	
Waight			

Weight:

2510 g incl. components

Descriptions:

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders, where the horizontal girder sits on top of the vertical girder. Oblong holes enable fine adjustment and are serrated to improve holding and load values. Connector is used on the side of the girders.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \frac{N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Élasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Possible loadi	Possible loading cases						
MIC-T 90-90	MIC T 120-120						

Design criteria used for loading capacity

Methodology:

- · Finite element analysis
- Analytic calculation

Standards and codes:

•	EN 1990 03.2003	Basics of structural design	
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

MIC-T 90-90	MIC-T 120-120	
Loading case: I	MIC-T 90-90	

Bill of Material for this loading case:

Angle incl. all components **1x MIC-T (pair)**

Connector used for perpendicular connections of two MI-90 girders, where Horizontal girder sits on top of the vertical girder

Recommended loading capacity - simplified for most common applications

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
15.25	15.25	8.50	8.50	26.80	26.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.75	0.75	1.60	1.60	0.70	0.70

Interaction:

 $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$

MIC-T 90-90	MIC-T 120-120	
Loading case: I	MIC-T 120-120	Combinations covered by loading case
Bill of Material for t	his loading case:	Connector used

Angle incl. all components **1x MIC-T (pair)**

Connector used For perpendicular connections of two MI-120 girders, where Horizontal girder sits on top of the vertical girder

Recommended loading capacity - simplified for most common applications

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
13.00	6.87	17.87

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
19.50	19.50	10.30	10.30	26.80	26.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.80	0.80	1.95	1.95	0.85	0.85

Interaction:

 $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$

Designation	m number		
MIC-90-LH		21	65050
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Toothed Plate	ISO 1461	45	
Bolt; Nut	ISO 1461	40; 45	

Weight:

4840 g incl. components

Description:

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders, where the horizontal girder is connected to the side of the vertical girder. Oblong holes enable fine adjustment and are serrated to improve holding and load values. Connector is

Material properties						
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus		
Connector, Plate C30, 1.0528 (DIN EN 10250-2)	$f_y = 250 \ \frac{N}{mm^2}$	$f_u = 480 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases			
Standard			

Design criteria used for loading capacity

Methodology:

- Analytic calculation
- Finite element analysis
- Hardware tests

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Loading case: Standard	Combinations covered by loading case		
Bill of Material for this loading case: 1x MIC-90-LH connector 2048107 Connector incl. all connecting hardware	Connector used for perpendicular connections of various combinations two MI-90 or 120 girders, to enable a cantilever arm		

Recommended loading capacity - simplified for most common applications

Design loading capacity - 3D	1/2
Method	
Visid strength Design load 1.5 Line load Action Resistance	
Limiting components of capacity evaluated	d in following tables:
1. Connection system, including connector, nardware and affect	ted portion of Mi girders, per FEA simulation
	Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
56.35	56.35	20.70	20.70	53.24	53.24
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.24	2.24	5.75	5.75	1.31	1.31

Interaction:

 $\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

2/2

Designation MIC-90-E		ignation Item number -90-E 304809		
Corrosion protection:				
Material	HDG per	Zinc thickness, min. (μm)		250 519 519
Connector, Plate	ISO 1461	55		2999 4000 1
Bolt; Nut	ISO 1461	40; 45		
Weight: 8.12 lb (3685 g) incl. co	mponents			

Description:

Hot dipped galvanized, Hilti MI extension connector typically used for connecting two MI-90 girders together to form a continuous girder. Fixed with 8 bolts and lock-nuts through the girder to enable a strong hold and vibration resistance.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1003	1 1 and used for all Eurocod	o calculations	mm

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

8x MIA-OH90

MIC-90-E

Possible loading cases				
Standard				

Design criteria used for loading capacity

Methodology:

- Analytic calculation .
- Finite element analysis
- Hardware tests

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, ٠ including those resulting from thermal or other expansion must be taken into account during design. Simplified drawing:

Recommended loading capacity - simplified for most common applications

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
118.82	118.82	19.00	19.00	19.00	19.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.10	2.10	1.95	1.95	1.95	1.95

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

2/2

Hardware included per connector

4x

1x

MI-120

8x

4x

MIC-120-E Connector

Designation MIC-120-E		lte 3(<u>em number</u> 04810
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (μm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Weight:			

Description:

Hot dipped galvanized, Hilti MI extension connector typically used for connecting two MI-120 girders together to form a continuous girder. Fixed with 8 bolts and lock-nuts through the girder to enable a strong hold and vibration resistance.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Medulus of Electicity and Shear Medul	up are according to EN 1002	1.1 and used for all Europed	a calculationa	

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculatio

Instruction For Use:

MIC-120-E Connector

Possible loading cases				
Standard				

Design criteria used for loading capacity

Methodology:

- Analytic calculation
- Finite element analysis
- Hardware tests

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

1x MIC-120-E

304810

Connector incl. all connecting hardware

MIC-120-E Connector

Connector used for extension of MI-120 girder

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

MIC-120-E Connector

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F). ٠
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
118.82	118.82	19.00	19.00	28.00	28.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.15	3.15	3.00	3.00	1.95	1.95

Interaction:

 $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$

MIC-U-MA Connector

Designation		lte 3	m number
		J	
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Toothed Plate	ISO 1461	45	
Bolt; Nut	ISO 1461	40; 45	

Weight:

2630 g incl. components

Description:

Hot dipped galvanized Hilti MI connector, typically used for connecting two MI girders, where one girder is braced / supported by the other at an angle, to improve total load capacity of the structure. One oblong hole enables fine adjustment and is serrated to improve holding. Connector is used on the sides

130 ø1;	8			197.5
Hardwa	are inc	luded	per c	onnector
			٢	and the second
2x	1x	1x	2x	1x

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

MIC-U-MA Connector

Possible loading cases			
Standard			

Design criteria used for loading capacity

Methodology:

- · Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

MIC-U-MA Connector

 Bill of Material for this loading case:

 1x MIC-U-MA (pair)
 304806

 Connector incl. all connecting hardware

 Image: Connector incl. all connecting hardware

Recommended loading capacity - simplified for most common applications

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F). •
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

 F_{α}

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Connection system, including con

nector, hardware and affected portion of MI-90 girders, per FEA simulation							
y	z	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	(20.00	20.00	6.70	6.70	13.15	13.15
		+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
		0.75	0.75	0.00	0.00	0.00	0.00
Note: The torsional moment M_x is referred to the local x direction of the inclined profile in plane x/z							

x-direction of the inclined profile in plane x/z.

Interaction:

$$F_{x.Ed\alpha} := F_{\alpha} \cdot \cos(\alpha)$$
$$F_{z.Ed\alpha} := F_{\alpha} \cdot \sin(\alpha)$$

$$\left(\frac{F_{x.Ed\alpha}}{F_{x.Rd}}\right)^2 + \left(\frac{F_{z.Ed\alpha}}{F_{z.Rd}}\right)^2 + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 68

2/2

Designation	lte	m number	
MIC-C90-AA		30	4825
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	

Weight:

3490 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to concrete. Two oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loadi	ng cases	
Standard		

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
 Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
50.30	63.30	31.60	31.60	31.60	31.60
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.85	2.85	1.81	1.81	1.00	1.00
					-

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Installation Technical Manual - Technical Data - MI system

2/<u>2</u>

Designation //IC-C90-DH		lte 21	<u>m number</u> 74661
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (μm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	

Weight:

8228g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, used for anchoring an MI-90 girder to concrete. Four round anchor holes of baseplate enable anchoring, and girder is connected using bolts through fixed holes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Module	us are according to EN 1993-	1-1 and used for all Eurocod	e calculations	

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases			
Standard			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Loading case: Standard	Combinations covered by loading case
Bill of Material for this loading case:	Baseplate connector used for
1x MIC-C90-DH 2174661	a perpendicular connection of
Connector incl. all connecting hardware	an MI-90 girder to concrete

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+FX,Ru [kN]	-FX,Ru [kN]	+Fy,Ru [kN]	-Fy,Ru [kN]	+F2,R0 [kN]	-F2,Ru [kN]
90.00	118.82	45.40	45.40	45.40	45.40
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
3.60	3.60	3.00	3.00	3.00	3.00
nteraction:					
$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$					

2. Welds – per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	

Interaction:

Fx.Ed	F _{y.Ed}	F _{z.Ed}	M _{x.Ed}	M _{y.Ed}	$\frac{M_{z.Ed}}{1} \leq 1$
F _{x.Rd}	F _{y.Rd}	F _{z.Rd}	M _{x.Rd}	My.Rd	M _{z.Rd}

Installation Technical Manual - Technical Data - MI system

Designation		lte	m number
MIC-C120-DH		21	74662
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (μm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	

Weight:

8688 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-120 girder to concrete. Four round anchor holes in baseplate for attachment to concrete, and girder is connected using bolts through fixed holes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \ \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Standard				

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

 \pm Fz,rec.

[kN]

42.3

MIC-C120-DH Base Material Connector - Concrete

Loading case: Standard	Combinations covered by loading case
Bill of Material for this loading case: Angle incl. all components 1x MIC-C120-DH 2174662	Baseplate connector used for a perpendicular connection of an MI-90 girder to concrete

Recommended loading capacity - simplified for most common applications

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
104.00	118.82	53.80	53.80	63.50	63.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.73	4.73	3.00	3.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 80

Designation MIC-C90-UH		lte 21	<u>m numbei</u> 1 79535
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	

Weight:

2450 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to concrete. Two oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.

2x M12-F-SL-WS 3/4" MIA-OH90

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$\mathbf{G} = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

ulus are according to EN 1993-1-1

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases					
Standard					

Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

Software:

- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connector body - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
13.19	93.32	25.00	25.00	25.00	25.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.10	4.10	0.00	0.00	0.00	0.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	0.00	0.00	0.00	0.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

Design loading capacity - 3D

3. Screws – per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
2.25	2.25	36.29	36.29	36.29	36.29
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.20	1.20	0.00	0.00	0.00	0.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Data version 2.1 I Date 10.2018

Installation Technical Manual - Technical Data - MI system

Designation		Ite	m number
MIC-CU-MAH		21	74664
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	

Weight:

2261 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to concrete in an angle, usually when it's used as a brace for another girder. Two round anchor holes in baseplate for attachment to concrete, and girder is connected using one bolt through a hole, which enables various angles.

Material properties						
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus		
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		
Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations						

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases			
Standard			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Loading case: Standard	Combinations covered by loading case
Bill of Material for this loading case: Angle incl. all components 1x MIC-CU-MAH 2174664	Baseplate connector used for an angled connection of an MI-90 girder to concrete (bracing)

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.70	0.70	0.00	0.00	0.00	0.00
nteraction:					

```
\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1
```

2. Welds – per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	15.80	15.80

Interaction:

 $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 90

Y = 170 mm

Hardware included per connector

2x

300

2x

MIC-S90-AA Base Material Connector - Steel

Designation MIC-S90-AA		lte 30
Corrosion protection:		
Material	HDG per	Zinc thickness, min. (μm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45
Weight: 4370 g incl. components		

Submittal text:

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam. Two oblong anchor holes in perpendicular positions enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111) Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2) Values for Modulue of Electicity and Shorr Modul	$f_y = 235 \frac{N}{mm^2}$ $f_y = 640 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$ $f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$ $E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$ G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Standard				

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

		i iiii oo gira		Simulatio	
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
24.40	63.30	31.60	31.60	31.60	31.60
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.85	2.85	1.81	1.81	1.00	1.00

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.13	49.13	49.13	49.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Beam Clamps - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
17.40	Not decisive	5.16	5.16	5.16	5.16
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.32	0.32	0.90	0.90	0.78	0.78

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd}*ey}{\dot{M}_{zRd}} + \frac{F_{zEd}*ez}{\dot{M}_{yRd}} + \frac{M_{vEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for

compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x',Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x',Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x',Rd}}\right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 95

Data version 2.1 I Date 10.2018

Installation Technical Manual - Technical Data - MI system

Hardware included per connector

MIC-S90-AH

(12)

1v 🕥

M12-F-SL

8-11/16" (220)

MIC-S90-AH Base Material Connector - Steel

Designation		lte	m number
MIC-S90-AH		21	/4665
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Weight: 7511 g_incl. component:	S		
Description:			

Description:

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-90 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$\mathbf{G} = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

For both loading cases

For clamped loading case

For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Clamped				

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped		Combinations covered by loading case	
Bill of Material for this loadingConnector incl. all associatedcomponents1x MIC-S90-AH217Beam clamps4x MI-SGC M16387	g case: 74665 7398	Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 75-165mm.	

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
54.80	118.82	45.40	45.40	45.40	45.40
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
3.60	3.60	3.00	3.00	3.00	3.00
nteraction					

```
\frac{F_{\mathbf{x}Ed}}{F_{\mathbf{x}Rd}} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}Ed}}{M_{\mathbf{x}Rd}} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1
```

2. Welds – per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

Interaction:

$$\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}\underline{Ed}}{F_{\mathbf{y}}\underline{Rd}} + \frac{F_{\mathbf{z}}\underline{Ed}}{F_{\mathbf{z}}\underline{Rd}} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}\underline{Ed}}{M_{\mathbf{y}}\underline{Rd}} + \frac{M_{\mathbf{z}}\underline{Ed}}{M_{\mathbf{z}}\underline{Rd}} \leq 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 100

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Beam Clamps - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.84	0.84	6.66	6.66	4.51	4.51

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{x \, Ed}}{F_{x \, Rd}} + \frac{F_{y \, Ed} * ey}{\dot{M}_{z \, Rd}} + \frac{F_{z \, Ed} * ez}{\dot{M}_{y \, Rd}} + \frac{M_{y \, Ed}}{M_{y \, Rd}} + \frac{M_{z \, Ed}}{M_{z \, Rd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y Ed}}{F_{y Rd} \times \left(1 - \frac{F_{x Ed}}{F_{x Rd}} \right)} \right)^2 + \left(\frac{F_{z Ed}}{F_{z Rd} \times \left(1 - \frac{F_{x Ed}}{F_{x Rd}} \right)} \right)^2 + \frac{M_{x Ed}}{M_{x Rd} \times \left(1 - \frac{F_{x Ed}}{F_{x Rd}} \right)} \le 1 \right|$$

Installation Technical Manual - Technical Data - MI system

Loading case: Boxed	Combinations covered by loading case
Bill of Material for this loading case: Connector incl. all associated components1x MIC-S90-AH2174665Base plate1746741x MIB-SAH21746741x MIB-SAH2174674Threaded rods cut to particular length 4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer 2185343Nut304767	Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 75-165mm.

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

	-	-			
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
57.70	118.82	45.40	45.40	45.40	45.40
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
3.60	3.60	3.00	3.00	3.00	3.00

Interaction:

 $\frac{F_{\mathbf{x}} \mathbf{E} \mathbf{d}}{F_{\mathbf{x}} \mathbf{R} \mathbf{d}} + \frac{F_{\mathbf{y}} \mathbf{E} \mathbf{d}}{F_{\mathbf{y}} \mathbf{R} \mathbf{d}} + \frac{F_{\mathbf{z}} \mathbf{E} \mathbf{d}}{F_{\mathbf{z}} \mathbf{R} \mathbf{d}} + \frac{M_{\mathbf{x}} \mathbf{E} \mathbf{d}}{M_{\mathbf{x}} \mathbf{R} \mathbf{d}} + \frac{M_{\mathbf{y}} \mathbf{E} \mathbf{d}}{M_{\mathbf{y}} \mathbf{R} \mathbf{d}} + \frac{M_{\mathbf{z}} \mathbf{E} \mathbf{d}}{M_{\mathbf{z}} \mathbf{R} \mathbf{d}} \leq 1$

2. Welds - per analytical calculation

		[IN]	[KN]	[kN]
230.12 230.12	49.31	49.31	49.31	49.31
+Mx,Rd -Mx,Rd [kNm] [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.64 5.64	3.45	3.45	3.45	3.45

Interaction:

 $\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y}\underline{Ed}}{F_{y}\underline{Rd}} + \frac{F_{z}\underline{Ed}}{F_{z}\underline{Rd}} + \frac{M_{x}\underline{Ed}}{M_{x}\underline{Rd}} + \frac{M_{y}\underline{Ed}}{M_{y}\underline{Rd}} + \frac{M_{z}\underline{Ed}}{M_{z}\underline{Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 103

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those • resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Base plate and through bolts - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
164.00	Not decisive	20.66	20.66	20.66	20.66
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.67	1.67	8.61	8.61	7.22	7.22

Interaction: Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{x Ed}}{F_{x Rd}} + \frac{F_{y Ed} * ey}{\dot{M}_{z Rd}} + \frac{F_{z Ed} * ez}{\dot{M}_{y Rd}} + \frac{M_{y Ed}}{M_{y Rd}} + \frac{M_{z Ed}}{M_{z Rd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is not valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 104

/2" (12)

0

M12-F-SL

8-11/16" (220)

6-1/8['] (155)

(17x64)

Hardware included per connector

Y = 210 mm

1x MIC-S90-BH

MIC-S90-BH Base Material Connector - Steel

Designation /IIC-S90-BH		1te 21	<u>em number</u> 174666
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (μm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Weight: 8964 g incl. component	ts		

Description:

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-90 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Flasticity and Shear Module	is are according to EN 1993-	-1-1 and used for all Eurocod	e calculations	

Instruction For Use:

For both loading cases

For clamped loading case

For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loading cases					
Clamped	Boxed				

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Bill of Material for this loading case: Connector incl. all associated Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. 1x MIC-S90-BH 2174666 Beam clamps 387398	Loading case: Clamped		Combinations covered by loading case		
	Bill of Material for this Connector incl. all assoc components 1x MIC-S90-BH Beam clamps 4x MI-SGC M16	loading case: biated 2174666 387398		Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 165-235mm.	

Recommended loading capacity - simplified for most common applications

capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
40.10	118.82	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	3.00

Interaction:

$$\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1$$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

Interaction:

$$\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1$$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F). •
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Beam Clamps - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.12	1.12	6.66	6.66	6.66	6.66

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{x Ed}}{F_{x Rd}} + \frac{F_{v Ed} * ey}{\dot{M}_{z Rd}} + \frac{F_{z Ed} * ez}{\dot{M}_{y Rd}} + \frac{M_{v Ed}}{M_{y Rd}} + \frac{M_{z Ed}}{M_{z Rd}} \le 1$$

Shear force interaction:

١

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for $\begin{array}{l} \mbox{compressive } F_{x, Ed} \mbox{ loads } (F_{x, Ed} < 0). \\ \mbox{For Shear interaction, user must ADDITIONALLY verify: } F_{x, Ed} \ / \ F_{x, Rd} < 1. \end{array}$

$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 109

Loading case: Boxed	Combinations covered by loading case
Bill of Material for this loading case:1x MIC-S90-BH2174666Hardware not included in packaging:Base plate1x MIB-SBH2174675Threaded rods cut to particular length4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer 2185343Nut8x M16-F nut304767	Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 165-235mm.

Recommended loading capacity - simplified for most common applications

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
40.10	80.50	45.40	45.40	45.40	45.40
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
3.60	3.60	3.00	3.00	3.00	3.00
					-

Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{vRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

Interaction:

 $\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
158.80	Not decisive	20.01	20.01	20.01	20.01
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.06	2.06	8.81	8.81	9.77	9.77

Interaction: Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd} * ey}{\dot{M}_{zRd}} + \frac{F_{zEd} * ez}{\dot{M}_{vRd}} + \frac{M_{vEd}}{M_{vRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

1

M12-F-SL

WS 3/4

MIC-S90-CH

MIC-S90-CH Base Material Connector - Steel

Designation		lte	em number
MIC-S90-CH		21	74667
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (μm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Weight: 10624 a_incl. componer	nts		
Description:			
Hilti Hot-dipped galvaniz	zed baseplate co	nnector, used for co	onnectina
a MI-90 girder to a steel	heam using M1	6 mounting hardwar	e Four slotted

a MI-90 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$\mathbf{G} = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993.	1-1 and used for all Eurocod	e calculations	

Values for Modulus of Elasticity and Shear Modulus are according to EN 1995-1-1 and used for all Eurocode call

Instruction For Use:

For both loading cases

For clamped loading case

For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Clamped	Boxed			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Bill of Material for this loading case:1x MIC-S90-CH2174667Hardware not included in packaging:Evan clampsBeam clamps3873984x MI-SGC M16387398	Loading case: Clamped	Combinations covered by loading case
	Bill of Material for this loading case: 1x MIC-S90-CH 2174667 Hardware not included in packaging: Beam clamps 4x MI-SGC M16 387398	Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 235-300mm.

Recommended loading capacity - simplified for most common applications

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
17.93	6.87	6.87

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.90	118.82	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	3.00

Interaction:

F _{xEd}	Fy.Ed	F _{z.Ed}	M _{xEd}	My.Ed	M _{z.Ed}
FxRd	F _{v.Rd}	Fz.Rd	M _{xRd} +	M _{v.Rd} +	M _{z.Rd} ≥ 1

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
230.12	230.12	49.31	49.31	49.31	49.31	
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
5.64	5.64	3.45	3.45	3.45	3.45	
Interaction: $\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$						

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 116

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Beam Clamps - per analytical calculation

with $e_v = e_z = 0.070 \text{ m}$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.41	1.41	6.66	6.66	8.45	8.45

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{v,Ed} * ey}{\dot{M}_{z,Rd}} + \frac{F_{z,Ed} * ez}{\dot{M}_{y,Rd}} + \frac{M_{v,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for $\begin{array}{l} \mbox{compressive } F_{x,\,Ed} \mbox{ loads } (F_{x,\,Ed} < 0). \\ \mbox{-} \mbox{For Shear interaction, user must ADDITIONALLY verify: } F_{x,\,Ed} \ / \ F_{x,\,Rd} < 1. \end{array}$

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Loading case: Boxed	Combinations covered by loading case
Bill of Material for this loading case:1x MIC-S90-CH2174667Hardware not included in packaging:Base plate1x MIB-SCH2174676Threaded rods cut to particular length4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer 2185343Nut8x M16-F nut304767	Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 235-300mm.

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
25.50	52.30	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	3.00

Interaction:

FxEd	Fy.Ed	F _{z.Ed}	M _{xEd}	My.Ed	M _{z.Ed}
F _{xRd}	F _{y.Rd}	F _{z.Rd}	M _{xRd}	My.Rd	M _{z.Rd}

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

Interaction:

 $\frac{F_{\mathbf{x}}E\mathbf{d}}{F_{\mathbf{x}}R\mathbf{d}} + \frac{F_{\mathbf{y}}\cdot E\mathbf{d}}{F_{\mathbf{y}}\cdot R\mathbf{d}} + \frac{F_{\mathbf{z}}\cdot E\mathbf{d}}{F_{\mathbf{z}}\cdot R\mathbf{d}} + \frac{M_{\mathbf{x}}\cdot E\mathbf{d}}{M_{\mathbf{x}}\cdot R\mathbf{d}} + \frac{M_{\mathbf{y}}\cdot E\mathbf{d}}{M_{\mathbf{y}}\cdot R\mathbf{d}} + \frac{M_{\mathbf{z}}\cdot E\mathbf{d}}{M_{\mathbf{z}}\cdot R\mathbf{d}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
150.80	Not decisive	19.00	19.00	19.00	19.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.57	2.57	8.82	8.82	12.29	12.29

Interaction: Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}*ey}{\dot{M}_{zRd}} + \frac{F_{zEd}*ez}{\dot{M}_{yRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Designation MIC-S120-AH		<u>Ite</u> 21	<u>m number</u> 74668
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Weight:			

7911 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-120 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$\mathbf{G} = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	1-1 and used for all Eurocod	e calculations	

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calcu

Instruction For Use:

For both loading cases:

For clamped loading case

For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loadi	ng cases	
Clamped	Boxed	

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
 Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case
Bill of Material for this loading case: 1x MIC-S120-AH 2174668 Hardware not included in packaging: Beam clamps 4x MI-SGC M16 387398	Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 75-165mm.

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
56.80	118.82	53.80	53.80	63.50	63.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.73	4.73	3.00	3.00

Interaction:

```
\frac{F_{\mathbf{x}\mathbf{Ed}}}{F_{\mathbf{x}\mathbf{Rd}}} + \frac{F_{\mathbf{y}}\underline{Ed}}{F_{\mathbf{y}}\underline{Rd}} + \frac{F_{\mathbf{z}}\underline{Ed}}{F_{\mathbf{z}}\underline{Rd}} + \frac{M_{\mathbf{x}\mathbf{Ed}}}{M_{\mathbf{x}\mathbf{Rd}}} + \frac{M_{\mathbf{y}}\underline{Ed}}{M_{\mathbf{y}}\underline{Rd}} + \frac{M_{\mathbf{z}}\underline{Ed}}{M_{\mathbf{z}}\underline{Rd}} \leq 1
```

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04

Interaction:

 $\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Beam Clamps - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.84	0.84	7.48	7.48	4.51	4.51

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{x \, Ed}}{F_{x \, Rd}} + \frac{F_{v \, Ed} * ey}{\dot{M}_{z \, Rd}} + \frac{F_{z \, Ed} * ez}{\dot{M}_{y \, Rd}} + \frac{M_{v \, Ed}}{M_{y \, Rd}} + \frac{M_{z \, Ed}}{M_{z \, Rd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is only valid for TENSILE F_{x, Ed} loads (F_{x, Ed} > 0). Equation is not valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). • For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 125

Loading case: Boxed	Combinations covered by loading case
Bill of Material for this loading case:1x MIC-S120-AH2174668Hardware not included in packaging:Base plate1x MIB-SAH2174674Threaded rods cut to particular length4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer2185343Nut304767	Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 75-165mm.

×	±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]			
	39.00	13.77	13.77			
	These values are individual one directional maximal capacity limits. For any combinations of multiple					

capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
58.50	118.82	53.80	53.80	63.50	63.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.73	4.73	3.00	3.00

Interaction:

$$\frac{F_{\mathbf{x}\underline{Ed}}}{F_{\mathbf{x}\underline{Rd}}} + \frac{F_{\mathbf{y}}\underline{Ed}}{F_{\mathbf{y}}\underline{Rd}} + \frac{F_{\mathbf{z}}\underline{Ed}}{F_{\mathbf{z}}\underline{Rd}} + \frac{M_{\mathbf{x}\underline{Ed}}}{M_{\mathbf{x}}\underline{Rd}} + \frac{M_{\mathbf{y}}\underline{Ed}}{M_{\mathbf{y}}\underline{Rd}} + \frac{M_{\mathbf{z}}\underline{Ed}}{M_{\mathbf{z}}\underline{Rd}} \leq 1$$

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
9.16	9.16	5.18	5.18	6.04	6.04
Interaction:					
$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$					

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Base plate and through bolts - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
164.00	Not decisive	20.66	20.66	20.66	20.66
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.67	1.67	10.99	10.99	7.22	7.22

Interaction: Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd}*ey}{\dot{M}_{zRd}} + \frac{F_{zEd}*ez}{\dot{M}_{vRd}} + \frac{M_{vEd}}{M_{vRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1 \right|$$

Installation Technical Manual - Technical Data - MI system

Designation		Ite	m number
MIC-S120-BH		21	74669
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Weight:			

9364 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-120 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

Instruction For Use:

For both loading cases:

For clamped loading case

For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loadi	ng cases	
Clamped	Boxed	

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
 Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case
Bill of Material for this loading case: 1x MIC-S120-BH 2174669 Hardware not included in packaging: Beam clamps 4x MI-SGC M16 387398	Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 165-235mm.

Recommended loading capacity - simplified for most common applications

interaction formulas

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
40.60	118.82	53.80	53.80	63.50	63.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.45	4.45	3.00	3.00

Interaction:

```
\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1
```


+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
9.16	9.16	5.18	5.18	6.04	6.04

Interaction:

$$\frac{F_{\mathbf{x}\mathbf{Ed}}}{F_{\mathbf{x}\mathbf{Rd}}} + \frac{F_{\mathbf{y}\cdot\mathbf{Ed}}}{F_{\mathbf{y}\cdot\mathbf{Rd}}} + \frac{F_{\mathbf{z}\cdot\mathbf{Ed}}}{F_{\mathbf{z}\cdot\mathbf{Rd}}} + \frac{M_{\mathbf{x}\cdot\mathbf{Ed}}}{M_{\mathbf{x}\cdot\mathbf{Rd}}} + \frac{M_{\mathbf{y}\cdot\mathbf{Ed}}}{M_{\mathbf{y}\cdot\mathbf{Rd}}} + \frac{M_{\mathbf{z}\cdot\mathbf{Ed}}}{M_{\mathbf{z}\cdot\mathbf{Rd}}} \leq 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 132

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F). •
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Beam Clamps - per analytical Calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.12	1.12	7.48	7.48	6.66	6.66

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd} * ey}{M_{zRd}} + \frac{F_{zEd} * ez}{M_{yRd}} + \frac{M_{vEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

١

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x',Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x',Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x',Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x',Rd}}\right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 133

Loading case: Boxed	Combinations covered by loading case
Bill of Material for this loading case:1x MIC-S120-BH2174669Hardware not included in packaging:Base plate1x MIB-SBH2174675Threaded rods cut to particular length4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer2185343Nut304767	Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 165-235mm.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
40.60	85.90	53.80	53.80	63.50	63.50
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.39	5.39	4.45	4.45	3.00	3.00
nteraction					

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{v.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{v.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04

Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

+F	Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
1:	58.80	Not decisive	20.01	20.01	20.01	20.01
+N [}	∕lx,Rd kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2	2.06	2.06	11.20	11.20	9.77	9.77

Interaction: Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}*ey}{\dot{M}_{zRd}} + \frac{F_{zEd}*ez}{\dot{M}_{yRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Designation MIC-S120-CH			m number 4820
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Waight			

Weight: 11024 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-120 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	1-1 and used for all Eurocod	e calculations	

Instruction For Use:

For both loading cases:

For clamped loading case

For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loadi	ng cases	
Clamped	Boxed	

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
 Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case		
Bill of Material for this loading case:1x MIC-S120-CH2174670Hardware not included in packaging: Beam clamps 4x MI-SGC M16387398	Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 235-300mm.		

Recommended loading capacity - simplified for most common applications

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
18.67	6.87	6.87

directions, use design values and their corresponding interaction formulas.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
28.00	118.82	53.80	53.80	58.10	58.10
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
5.39	5.39	4.07	4.07	3.00	3.00

Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{vRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{vRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
9.16	9.16	5.18	5.18	6.04	6.04

Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y}Ed}{F_{v}Rd} + \frac{F_{z}Ed}{F_{z}Rd} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y}Ed}{M_{v}Rd} + \frac{M_{z}Ed}{M_{z}Rd} \leq 1$$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3. Beam Clamps - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.41	1.41	7.37	7.37	8.45	8.45

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd} * ey}{\dot{M}_{zRd}} + \frac{F_{zEd} * ez}{\dot{M}_{yRd}} + \frac{M_{vEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{yRd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for

$$\int_{V}^{F} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Ed}}{F_{y, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{integraduon}_{x, Rd}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{Shear} \operatorname{Shear} \left(1 - \frac{F_{x, Rd}}{F_{x, Rd}}\right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \operatorname{Shear} \left(1 - \frac{F_{x, Rd}}{F_{x, Rd}}\right)^{+} \left(1 - \frac{F_{x, Rd}}{F_{x, Rd}}\right)^{+} \right)^{+} \left(\frac{\sigma \operatorname{Shear} \left(1 - \frac{F_{x, Rd}}{F_{x, Rd}}\right)^{+} \left(1 - \frac{F_{x, Rd}}{F_{x, Rd}}\right)^{+} \right)^{+} \left(1 - \frac{F_{x, Rd}}{F_{x, Rd}}\right)^{+} \left(1 - \frac{F_{x,$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 141

MIC-S120-CH Base Material Connector - Steel

5	
Bill of Material for this loading case:1x MIC-S120-CH2174670Hardware not included in packaging:Base plate1x MIB-SCH2174676Threaded rods cut to particular length4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer2185343Nut304767	Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 235-300mm.

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.50	55.30	53.80	53.80	58.10	58.10
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.07	4.07	3.00	3.00

Interaction:

```
\frac{F_{\mathbf{x}\mathbf{Ed}}}{F_{\mathbf{x}\mathbf{Rd}}} + \frac{F_{\mathbf{y}}\underline{Ed}}{F_{\mathbf{y}}\underline{Rd}} + \frac{F_{\mathbf{z}}\underline{Ed}}{F_{\mathbf{z}}\underline{Rd}} + \frac{M_{\mathbf{x}}\underline{Ed}}{M_{\mathbf{x}}\underline{Rd}} + \frac{M_{\mathbf{y}}\underline{Ed}}{M_{\mathbf{y}}\underline{Rd}} + \frac{M_{\mathbf{z}}\underline{Ed}}{M_{\mathbf{z}}\underline{Rd}} \leq 1
```

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
316.42	316.42	81.16	81.16	100.68	100.68	
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
9.16	9.16	5.18	5.18	6.04	6.04	
Interaction:						

$$\frac{\frac{1}{2} \frac{xEd}{F_xRd}}{F_xRd} + \frac{\frac{1}{2} \frac{xEd}{F_zRd}}{F_zRd} + \frac{\frac{M_xEd}{M_xRd}}{M_xRd} + \frac{\frac{M_yEd}{M_zRd}}{M_yRd} + \frac{\frac{M_zEd}{M_zRd}}{M_zRd} \le 1$$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
150.80	Not decisive	19.00	19.00	19.00	19.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.57	2.57	10.86	10.86	12.29	12.29

Interaction: Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd} * ey}{\dot{M}_{zRd}} + \frac{F_{zEd} * ez}{\dot{M}_{yRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 144

Designation		lte	m number
MIC-SA-MAH		21	74671
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Waight:			

Weight: 6701g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to a steel beam at an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles. For use with **M16** hardware.

Material properties					
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus	
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$	
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$	
Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations					

Instruction For Use:

For both loading cases:

For clamped loading case For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loadi	ng cases	
Clamped	Boxed	

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case		
Bill of Material for this loading case: MIC-SA-MAH 2174671 Hardware not included in packaging: Beam clamps 4x MI-SGC M16 387398	Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 75-165mm.		

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector and hardware, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{x Ed \alpha}}{F_{x Rd}^{'}}\right)^{2} + \left(\frac{F_{z Ed \alpha}}{F_{z Rd}^{'}}\right)^{2} + \frac{F_{v Ed}}{F_{y Rd}^{'}} + \frac{M_{x Ed}}{M_{x Rd}^{'}} \leq 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $F_{x, Ed, \alpha} = F_{\alpha} \times \cos (\alpha)$ $F_{z, Ed, \alpha} = F_{\alpha} \times \sin (\alpha)$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

3/4

MIC-SA-MAH Base Material Connector - Steel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

y x	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	325.83	325.83	11.97	11.97	47.45	47.45
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
atter and the	2.30	2.30	0.00	0.00	0.00	0.00
	Note: Desigi are v Values inclu	n Strength v alid for any de verificati	values for gi bracing ang on of hexag	rder Torsion le. onal bolt	about the ι	xx-axis (M _{ax})
М	Interaction:	_	_	_		
F _{ax}	<u> </u>	$\frac{F_{x E d \alpha}}{F_{x R d}} +$	$\frac{F_{z E d \alpha}}{F_{z R d}}$	+ $\frac{F_{vEd}}{F_{yRd}}$	+ $\frac{M_{x Ec}}{M_{x Rc}}$	¹ ≤ 1
	Use of $F_{\alpha x}$: I determinate	n case only load compo	the force al onents as fo	ong the bra llows:	ce axis (αx)	is known,
	$F_{z, Ed, \alpha} = F_{\alpha}$ $F_{z, Ed, \alpha} = F_{\alpha}$ $M_{x, Ed} = M_{ax}$	$c \cos(\alpha)$ $c \sin(\alpha)$				
					F _{x,e}	d, α F _α
						F _{x, Ed, α}
	Important no mounted mu connector re	ote: The res ist be check esistances th	istance of si ted appropri ne steel gird	teel girder o ately by the ler is consid	n which con client. For ered to be r	nector MIC-SA-MAI determination of igid.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.84	0.84	6.66	6.66	3.33	3.33

Normal force interaction:

The eccentricity e_y and e_z between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{x,Ed,\alpha}}{F_{x,Rd}} + \frac{F_{y,Ed} \times ey}{M_{z,Rd}} + \frac{F_{z,Ed,\alpha} \times ez}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$$

with $e_y = e_z = 0.070$ m

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\left| \left(\frac{F_{y \ Ed}}{F_{y, \ Rd}} \right)^2 + \left(\frac{F_{z \ Ed}}{F_{z, \ Rd}} \right)^2 + \frac{M_{x \ Ed}}{M_{x, \ Rd}} \le 1 \right|$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Mαx can either generate shear or tension, it will be considered in both interactions.

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Bill of Material for this loading case: 1x MIC-SA-MAH 2174671 Hardware not included in packaging: Base plate 1x MIB-SAH 2174674 Threaded rods cut to particular length 4x AM16x1000 8.8 HDGm 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut 304767Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 75-165mm.Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 75-165mm.	Loading case: Boxed	Combinations covered by loading case		
	Bill of Material for this loading case: 1x MIC-SA-MAH 2174671 Hardware not included in packaging: Base plate 1x MIB-SAH 2174674 Threaded rods cut to particular length 4x AM16x1000 8.8 HDGm 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut 304767	Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 75-165mm.		

Recommended loading capacity - simplified for most common applications

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector and hardware, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{x E d \alpha}}{F_{x R d}^{'}}\right)^{2} + \left(\frac{F_{z E d \alpha}}{F_{z R d}^{'}}\right)^{2} + \frac{F_{v E d}}{F_{y R d}^{'}} + \frac{M_{x E d}}{M_{x R d}^{'}} \leq 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $F_{x, Ed, \alpha} = F_{\alpha} \times \cos (\alpha)$ $F_{z, Ed, \alpha} = F_{\alpha} \times \sin (\alpha)$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

+Fx,F	Rd -Fx,F	d +Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[[kN]	[kN]	[kN]	[kN]
325.8	3 325.8	33 11.97	11.97	47.45	47.45
+Mx,F	Rd -Mx,F	Rd +My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm	ı] [kNm	1] [kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

$$\frac{F_{x E d \alpha}}{F_{x R d}} + \frac{F_{z E d \alpha}}{F_{z R d}} + \frac{F_{y E d}}{F_{y R d}} + \frac{M_{x E d}}{M_{x R d}} \le 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $\begin{aligned} F_{x, Ed, \alpha} &= F_{\alpha} \times \cos \left(\alpha \right) \\ Fz'_{Ed, \alpha} &= F_{\alpha} \times \sin \left(\alpha \right) \\ M'_{x, Ed} &= M_{ax} \end{aligned}$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

<u>4/4</u>

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Designation		lte	m number
MIC-SB-MAH		21	74672
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	

Weight:

8154 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to a steel beam at an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles. For use with **M16** hardware.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$\mathbf{G} = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993.	1-1 and used for all Eurocod	e calculations	

Instruction For Use:

For both loading cases:

For clamped loading case For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Clamped	Boxed			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case		
Bill of Material for this loading case: MIC-SB-MAH 2174672 Hardware not included in packaging: Beam elempte	Connector used for an angled connection of MI-90 to structural steel profiles		
4x MI-SGC M16 387398	(bracing). For flange width 165-235mm.		

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector and hardware, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{x Ed \alpha}}{F_{x Rd}}\right)^{2} + \left(\frac{F_{z Ed \alpha}}{F_{z Rd}}\right)^{2} + \frac{F_{v Ed}}{F_{y Rd}} + \frac{M_{x Ed}}{M_{x Rd}} \le 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $F_{x, Ed, \alpha} = F_{\alpha} \times \cos (\alpha)$ $F_{z, Ed, \alpha} = F_{\alpha} \times \sin (\alpha)$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

3/4

MIC-SB-MAH Base Material Connector - Steel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

y x	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	325.83	325.83	11.97	11.97	47.45	47.45
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
atter and the	2.30	2.30	0.00	0.00	0.00	0.00
	Note: Desigi are v Values inclu	n Strength v alid for any de verificati	values for gi bracing ang on of hexag	rder Torsion le. onal bolt	about the a	xx-axis (M _{ax})
M	Interaction:					
Fux	<u> </u>	$\frac{F_{x E d \alpha}}{F_{x R d}} +$	$\frac{F_{z E d \alpha}}{F_{z R d}}$	+ $\frac{F_{vEd}}{F_{yRd}}$	+ $\frac{M_{x Ec}}{M_{x Rc}}$	[⊥] ≤ 1
	Use of $F_{\alpha x}$: I determinate	, n case only load compo	, the force al onents as fo	ong the bra llows:	, ce axis (αx)	is known,
	$F_{x, Ed, \alpha} = F_{\alpha}$ $F_{z', Ed, \alpha} = F_{\alpha}$ $M'_{x, C'}$	$(\cos (\alpha))$ $(\sin (\alpha))$				
	$r x_{,Ld} = r x_{,dx}$				F _{x,}	^α , α F _α
						* x, Εα, α
	Important no mounted mu connector re	ote: The res ist be check esistances tl	istance of st and appropri ne steel gird	teel girder o ately by the ler is consid	n which con client. For c ered to be r	nector MIC-SA-M, determination of igid.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

 $F_{x, Ed, \alpha} = F_{\alpha} \times \cos (\alpha)$ $F_{z, Ed, \alpha} = F_{\alpha} \times \sin (\alpha)$

$$\begin{split} & M_{x, Ed} = M_{\alpha x} \, \mathbf{x} \, \cos \, (\alpha) \\ & M_{z, Ed} = M_{\alpha x} \, \mathbf{x} \, \sin \, (\alpha) \end{split}$$

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.12	1.12	6.66	6.66	6.66	6.66

Normal force interaction:

The eccentricity e_y and e_z between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{x,Ed,\alpha}}{F_{x,Rd}} + \frac{F_{y,Ed} \times ey}{M_{z,Rd}} + \frac{F_{z,Ed,\alpha} \times ez}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$$

with $e_y = e_z = 0.070$ m

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):

$$\left| \left(\frac{F_{y, Ed}}{F_{y, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}} \right)} \right)^2 + \left(\frac{F_{z, Ed}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}} \right)} \right)^2 + \frac{M_{x, Ed}}{M_{x, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}} \right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\left| \left(\frac{F_{y \ Ed}}{F_{y \ Rd}} \right)^2 + \left(\frac{F_{z \ Ed}}{F_{z \ Rd}} \right)^2 + \frac{M_{x \ Ed}}{M_{x \ Rd}} \le 1 \right|$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Mαx can either generate shear or tension, it will be considered in both interactions.

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

4.40

90°

60°

MIC-SB-MAH Base Material Connector - Steel

Bill of Material for this loading case:Connector used for an angled connection of MI-90 to structural steel profiles (bracing).Connector used for an angled connection of MI-90 to s	Loading case: Boxed	Combinations covered by loading case		
	Bill of Material for this loading case:1x MIC-SB-MAH2174672Hardware not included in packaging:Base plate1x MIB-SBH2174675Threaded rods cut to particular length4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer8x M16-F nut304767	Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 165-235mm.		

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector and hardware, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{x E d \alpha}}{F_{x R d}^{'}}\right)^{2} + \left(\frac{F_{z E d \alpha}}{F_{z R d}^{'}}\right)^{2} + \frac{F_{v E d}}{F_{y R d}^{'}} + \frac{M_{x E d}}{M_{x R d}^{'}} \leq 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $F_{x, Ed, \alpha} = F_{\alpha} \times \cos (\alpha)$ $F_{z, Ed, \alpha} = F_{\alpha} \times \sin (\alpha)$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	15.80	153.80

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

$$\frac{F_{x E d \alpha}}{F_{x R d}} + \frac{F_{z E d \alpha}}{F_{z R d}} + \frac{F_{y E d}}{F_{y R d}} + \frac{M_{x E d}}{M_{x R d}} \le 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $\begin{aligned} F_{x, Ed, \alpha} &= F_{\alpha} \times \cos \left(\alpha \right) \\ Fz'_{Ed, \alpha} &= F_{\alpha} \times \sin \left(\alpha \right) \\ M'_{x, Ed} &= M_{ax} \end{aligned}$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

4/4

MIC-SB-MAH Base Material Connector - Steel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Designation		lte	m number
MIC-SC-MAH		21	74673
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Connector, Plate	ISO 1461	55	
Bolt; Nut	ISO 1461	40; 45	
Weight:			

8154 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to a steel beam at an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles. For use with **M16** hardware.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	1-1 and used for all Eurocod	e calculations	

Instruction For Use:

For both loading cases:

For clamped loading case [For boxed loading case (not attached to the packaging)]

Installation Technical Manual - Technical Data - MI system

Possible loading cases			
Clamped	Boxed		

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case
Bill of Material for this loading case: MIC-SC-MAH 2174673 Hardware not included in packaging: Beam clamps 4x MI-SGC M16 387398	Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 235-300mm.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector and hardware, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{x Ed \alpha}}{F_{x Rd}}\right)^2 + \left(\frac{F_{z Ed \alpha}}{F_{z Rd}}\right)^2 + \frac{F_{v Ed}}{F_{y Rd}} + \frac{M_{x Ed}}{M_{x Rd}} \le 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $F_{x, Ed, \alpha} = F_{\alpha} \times \cos (\alpha)$ $F_{z, Ed, \alpha} = F_{\alpha} \times \sin (\alpha)$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

3/4

MIC-SC-MAH Base Material Connector - Steel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	325.83	325.83	11.97	11.97	47.45	47.45
and the second sec	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
and a state of the	2.30	2.30	0.00	0.00	15.80	15.80
	Note: Desigi are v Values inclu	n Strength v alid for any de verificati	alues for gi bracing ang on of hexag	rder Torsion le. onal bolt	about the a	xx-axis (M _{ax})
	Interaction:					
	<u> </u>	$F_{x_{Rd}}^{\underline{x} \in d \alpha} +$	$\frac{F_{z E d \alpha}}{F_{z R d}}$	+ $\frac{F_{v Ed}}{F_{y Rd}}$	+ $\frac{M_{x Ec}}{M_{x Rc}}$	⁴ ≤ 1
	Use of $F_{\alpha x}$: I determinate	n case only load compo	the force al	ong the bra llows:	ce axis (αx)	is known,
	$F_{x, Ed, \alpha} = F_{\alpha}$ $F_{z, Ed, \alpha} = F_{\alpha}$ $M_{x, Ed} = M_{\alpha x}$	c cos (α) c sin (α)				
	. <u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				F _{x,d}	a, α F _α
						F _{x, Ed, α}
	Important no mounted mu connector re	ote: The res ist be check esistances th	istance of si ed appropri ne steel gird	teel girder o ately by the ler is consid	n which con client. For ered to be r	nector MIC-SA-MA determination of igid.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

 $F_{x, Ed, \alpha} = F_{\alpha} \times \cos (\alpha)$ $F_{z, Ed, \alpha} = F_{\alpha} \times \sin (\alpha)$

$$\begin{split} & M_{x, Ed} = M_{\alpha x} \, \mathbf{x} \, \cos \, (\alpha) \\ & M_{z, Ed} = M_{\alpha x} \, \mathbf{x} \, \sin \, (\alpha) \end{split}$$

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.41	1.41	6.66	6.66	8.70	8.70

Normal force interaction:

The eccentricity e_y and e_z between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{x,Ed,\alpha}}{F_{x,Rd}} + \frac{F_{y,Ed} \times ey}{M_{z,Rd}} + \frac{F_{z,Ed,\alpha} \times ez}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$$

with $e_y = e_z = 0.070$ m

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):

$$\left| \left(\frac{F_{y, Ed}}{F_{y, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}} \right)} \right)^2 + \left(\frac{F_{z, Ed}}{F_{z, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}} \right)} \right)^2 + \frac{M_{x, Ed}}{M_{x, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}} \right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\left| \left(\frac{F_{y \ Ed}}{F_{y \ Rd}} \right)^2 + \left(\frac{F_{z \ Ed}}{F_{z \ Rd}} \right)^2 + \frac{M_{x \ Ed}}{M_{x \ Rd}} \le 1 \right|$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Mαx can either generate shear or tension, it will be considered in both interactions.

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

MIC-SC-MAH Base Material Connector - Steel

Bill of Material for this loading case:1x MIC-SC-MAH2174673Hardware not included in packaging:Base plate1x MIB-SCH2174676Threaded rods cut to particular length4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer2185343Nut8x M16-F nut304767	Loading case: Boxed	Combinations covered by loading case
	Bill of Material for this loading case:1x MIC-SC-MAH2174673Hardware not included in packaging:Base plate1x MIB-SCH2174676Threaded rods cut to particular length4x AM16x1000 8.8 HDGm419104Lock washer8x LW M16 HDG plus washer2185343Nut8x M16-F nut304767	Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 235-300mm.

Recommended loading capacity - simplified for most common applications Method y x ±Fy,rec.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector and hardware, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{x E d \alpha}}{F_{x R d}^{'}}\right)^{2} + \left(\frac{F_{z E d \alpha}}{F_{z R d}^{'}}\right)^{2} + \frac{F_{v E d}}{F_{y R d}^{'}} + \frac{M_{x E d}}{M_{x R d}^{'}} \leq 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $F_{x, Ed, \alpha} = F_{\alpha} \times \cos (\alpha)$ $F_{z, Ed, \alpha} = F_{\alpha} \times \sin (\alpha)$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	15.80	15.80

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

 $\frac{F_{xEd\,\alpha}}{F_{xRd}} + \frac{F_{zEd\,\alpha}}{F_{zRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{M_{xEd}}{M_{xRd}} \le 1$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

 $\begin{aligned} F_{x, Ed, \alpha} &= F_{\alpha} \times \cos \left(\alpha \right) \\ Fz'_{Ed, \alpha} &= F_{\alpha} \times \sin \left(\alpha \right) \\ M'_{x, Ed} &= M_{ax} \end{aligned}$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

4/4

MIC-SC-MAH Base Material Connector - Steel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Designation		Ite	m number
MI-DGC 90		23	3860
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (µm)	
Bolt; Nut	ISO 1461	40; 45	
Clamp	ISO 1461	55	
Beam Clamp U-bolt	ASTM A153	56	

Weight:

1015.6 g incl. components

Submittal text:

Hilti Hot-dipped galvanized steel beam clamp, typically used to connect a horizontal MI-90 or MIQ-90 girder to steel beam. Two U-bolts carry the girder and are connected to the clamp with saddles and nuts.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Clamp EN-GJMB-450-6 (DIN EN 1562)	$f_y = 270 \frac{N}{mm^2}$	$f_u = 450 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Beam Clamp U-bolt 41Cr4 (DIN EN 10083-3 2007.1)	$f_y = 800 \ \frac{N}{mm^2}$	$f_u = 1000 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Standard				

Design criteria used for loading capacity

Methodology:

- Analytic calculation
- Hardware tests

Standards and codes:

٠	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

Software:

- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

Loading case: Stand	lard	Combinations covered by loading	j case
BOM: Connector incl. all associa	red	Connector used for horizontal connection	
components MI-DGC 90	233860	of structural steel profiles.	
Associated MI System girc MI-90 3m MI-90 6m	ers (channels) 304799 304798	Flange thickness 3-36mm.	

Recommended loading capacity - simplified for most common applications

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

-	
Standard	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Installation Technical Manual - Technical Data - MI system

Designation	m number		
MI-DGC 120 233			3861
Corrosion protection:			
Material	HDG per	Zinc thickness, min. (μm)	
Bolt; Nut	ISO 1461	40; 45	
Clamp	ISO 1461	55	
Beam Clamp U-bolt	ASTM A153	56	

Weight:

1041.9 g incl. components

Submittal text:

Hilti Hot-dipped galvanized steel beam clamp, typically used to connect a horizontal MI-120 girder to a steel beam. Two U-bolts carry the girder and are connected to the clamp with saddles and nuts.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \ \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Clamp EN-GJMB-450-6 (DIN EN 1562)	$f_y = 270 \ \frac{N}{mm^2}$	$f_u = 450 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Beam Clamp U-bolt 41Cr4 (DIN EN 10083-3 2007.1)	$f_y = 800 \frac{N}{mm^2}$	$f_u = 1000 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Possible loadi	ng cases	
Standard		

Design criteria used for loading capacity

Methodology:

- Analytic calculation
- Hardware tests

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

MI-DGC 120 Base Material Connector - Steel

Loading case: Stan	dard	Combinations covered by loadin	g case
BOM: Connector incl. all associa components MI-DGC 120	ated 233861	Connector used for horizontal connection of MI-120 to the flanges of structural steel profiles.	
Associated MI System gir MI-120 3m MI-120 6m	ders (channels) 304800 304801	Flange thickness 3-36mm.	

Recommended loading capacity - simplified for most common applications

MI-DGC 120 Base Material Connector - Steel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Installation Technical Manual - Technical Data - MI system

230

MIC-C90-DH-500-2000 Bracket - Concrete

Designation MIC-C90-DH- 500 MIC-C90-DH- 750 MIC-C90-DH-1000 MIC-C90-DH-1500 MIC-C90-DH-2000		Ite	m number 2203572 2203573 2203574 2203575 2203576	
sion protection:				
erial	HDG per	Zinc thickness, min. (µm)		and the second sec
racket	ISO 1461	55		
ight:				
C-C90-DH- 500	11086g			
C-C90-DH- 750	13473g			Hard
IC-C90-DH-1000	15860g			
1IC-C90-DH-1500	20634g			
MIC-C90-DH-2000	25407g			
Submittal text:				Designat

Hilti Hot-dipped galvanized bracket used as fixed to concrete. Four oblong anchor holes enable fine tuning of baseplate position, and girder is welded on the baseplate.

Designation	L[mm]
MIC-C90-DH - 500	500
MIC-C90-DH - 750	750
MIC-C90-DH -1000	1000
MIC-C90-DH -1500	1500
MIC-C90-DH -2000	2000

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

No IFU attached to the packaging

Respect IFU from the used anchor

Possible loading cases		
Standard		

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
 Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Base plate and profile of MI-90 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
116.60	101.54	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.20	6.20	6.20	6.20

includes cross section resistance of steel base plate and channel Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
9.54	9.54	6.84	6.84	6.84	6.84
Interaction:					
F _{x.Ed} F _{y.Ed} F _{z.Ed} M _{x.Ed} M _{y.Ed} M _{z.Ed}					

$\frac{1}{F_{x,Rd}} + \frac{y,Lu}{F_{y,Rd}} + \frac{z,Lu}{F_{z,Rd}} + \frac{x,Lu}{M_{x,Rd}} + \frac{y,Lu}{M_{y,Rd}} + \frac{z,Lu}{M_{z,Rd}} \le 1$

Installation Technical Manual - Technical Data - MI system

Designation	Item number
MIC-C120-DH- 500	2203577
MIC-C120-DH- 750	2203578
MIC-C120-DH-1000	2203579
MIC-C120-DH-1500	2203580
MIC-C120-DH-2000	2203581

Corrosion protection:

Material	HDG per	Zinc thickness, min. (µm)
Bracket	ISO 1461	55

Weight:

MIC-C120-DH- 500	18528a
MIC-C120-DH- 750	21715g
MIC-C120-DH-1000	24903g
MIC-C120-DH-1500	31278g
MIC-C120-DH-2000	37653g

Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to concrete. Four oblong anchor holes enable fine tuning of baseplate position, and girder is welded on the baseplate.

Material propert

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$\mathbf{G} = 80769 \frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	1-1 and used for all Eurocod	e calculations	

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

No IFU attached to the packaging

Respect IFU from the used anchor

Designation	L[mm]
MIC-C120-DH- 500	500
MIC-C120-DH- 750	750
MIC-C120-DH-1000	1000
MIC-C120-DH-1500	1500
MIC-C120-DH-2000	2000

Possible loadi	ng cases	
Standard		

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
 Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm..

1. Base plate and profile of MI-120 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
132.00	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	10.00	10.00	8.72	8.72

includes cross section resistance of steel base plate and channel Interaction:

F _{x.Ed}	Fy.Ed	Fz.Ed	M _{x.Ed}	My.Ed	Mz.Ed
Fx.Rd	F _{v.Rd}	Fz.Rd	M _{x.Rd} +	M _{v.Rd}	M _{z.Rd} ^{S 1}

2	Welds -	per ana	alvtical	calculation
<u> </u>	**0100	per un	aryticui	ourounditorr

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	11.91	11.91	10.28	10.28

Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$

Designation MIC-S90-AH- 500 MIC-S90-AH- 750 MIC-S90-AH-1000 MIC-S90-AH-1500 MIC-S90-AH-2000		lte 2 2 2 2 2 2 2 2	em number 203582 203583 203584 203585 203586		B 15 155
Material	HDG per	Zinc thickness, min.			17x64
Bracket	ISO 1461	(μm) 55		B = 280mm	
Weight: MIC-S90-AH- 500 MIC-S90-AH- 750 MIC-S90-AH-1000 MIC-S90-AH-1500 MIC-S90-AH-2000 Submittal text: Hilti Hot-dipped galvaniz The fixation could be dor First principle is clamping structural steel profile.	11773g 14160g 16546g 21320g 26094g ed bracket used ne by two differer g, using four bea	as fixed to structur nt principles. m clams clamped o	al steel profiles. on flange of the	X = 200mn Y = 140mn Hardware Designatio MIC-S90-/ MIC-S90-/ MIC-S90-/ MIC-S90-/ MIC-S90-/	n included per connector on L[mm] AH- 500 500 AH- 750 750 AH-1000 1000 AH-1500 1500 AH-12000 2000
Material properties					
Material Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)		Yield strength $f_y = 235 \frac{N}{mm^2}$	Ultimate strength $f_u = 360 \frac{N}{mm^2}$	Modulus of elasticity E = 210000 $\frac{N}{mm^2}$	Shear modulus G = 80769 ^N / _{mm²}
Girder DD11 MOD (EN 10111)	and Shoor Modulus are	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

city and She al iniouulus are according to

Instruction For Use:

No IFU attached to the packaging

For clamped loading case

For boxed loading case (not attached to the packaging)

Possible loading cases				
Clamped	Boxed			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design. **Simplified drawing:**

B Designation L[mm] MIC-S90-AH- 500 500 MIC-S90-AH- 750 750 12 MIC-S90-AH-1000 1000 MIC-S90-AH-1500 1500 MIC-S90-AH-2000 2000 B = 280mm 155 220 X = 200mm Y = 140mm Ø14 60x13

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case		
BOM: Brackets: 1x MIC-S90-AH- 500 2203582 MIC-S90-AH- 750 2203583 MIC-S90-AH- 1000 2203584 MIC-S90-AH-1500 2203585 MIC-S90-AH-1500 2203586 MIC-S90-AH-2000 2203586 Beam clamps 387398	Pre-fab bracket for perpendicular connection to structural steel profiles flanges. Flange width 75-165mm.		

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Clamped	Boxed	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Mx,Rd

[kNm]

9.54

Interaction:

-Mx,Rd

[kNm]

9.54

 $\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}}$

+My,Rd

[kNm]

6.84

1. Bracket per FEA simulation

2. Welds - per analytical calculation

1	+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd		
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]		
	95.90	101.54	57.20	57.20	57.20	57.20		
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]		
	4.50	4.50	6.08	6.08	6.08	6.08		
i	includes cross section resistance of steel base plate and channel Interaction:							
	$\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1$							
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]		
	285.11	285.11	116.39	116.39	116.39	116.39	1	

-My,Rd

[kNm]

6.84

M_{y.Ed} M_{v.Rd} +Mz,Rd

[kNm]

6.84

 $\frac{M_{z.Ed}}{1} \leq 1$

M_{z.Rd}

-Mz,Rd

[kNm]

6.84

T Z

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Clamped	Boxed	

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Beam Clamps - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.84	0.84	7.37	7.37	4.25	4.25

Interaction: Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

MIC-S90-AH-500-2000 Bracket - Steel

Loading case: Boxed	Combinations covered by loading case
BOM: Brackets: 1x MIC-S90-AH- 500 2203582 MIC-S90-AH- 750 2203583 MIC-S90-AH-1000 2203584 MIC-S90-AH-1500 2203586 Base plate 174675 Threaded rods cut to particular length 4x AM16x1000 8.8 HDGm 419104 Lock washer 2185343 Nut 304767	Pre-fab bracket for perpendicular connection to structural steel Profiles boxing it with two base plates. Flange width 75-165mm.

Recommended loading capacity - simplified for most common applications						
Method	y x +Fx,rec. ±Fy,rec. ±Fz,rec. [kN] [kN] [kN]					
Yield strength	z 67.07 13.77 13.77					
Permissible stress Permissible stress Permissible	±My,rec. [kNm]					
Live load	4.05					
Action Resistance	These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.					

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	100.60	101.54	57.20	57.20	57.20	57.20
z	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
	4.50	4.50	6.08	6.08	6.08	6.08
	includes cro	ess section r	resistance of	f steel base	plate and cl	nannel
	$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}}$	$\frac{d}{d} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}}$	$\frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.E}}{M_{y.E}}$	$\frac{d}{d} + \frac{M_{z.Ed}}{M_{z.Rd}} \le$	1	
2. Welds - per analytical calculation	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	285.11	285.11	116.39	116.39	116.39	116.39
z z	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
	9.54	9.54	6.84	6.84	6.84	6.84
	Interaction	:				

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Base plate and through bolts - per analytical calculation

7						
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	164.00	Not decisive	20.66	20.66	20.66	20.66
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
	1.67	1.67	11.64	11.64	6.81	6.81

Interaction:

Normal force interaction:

$$\frac{F_{x Ed}}{F_{x Rd}} + \frac{M_{y Ed}}{M_{y Rd}} + \frac{M_{z Ed}}{M_{z Rd}} \le 1$$

Shear force interaction:

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Designation I MIC-S90-BH- 500 MIC-S90-BH- 750 MIC-S90-BH-1000 MIC-S90-BH-1500 MIC-S90-BH-2000 MIC-S90-BH-2000			em number 2203587 2203588 2203589 2203590 2203591	~	B 15 155		
Corrosion protection:		_ , ,,, , , ,			and the second s	220	
Material	HDG per	Zinc thickness, min. (µm)				17x64	
Bracket	ISO 1461	55		В	= 350mm	l	
Weight:				X	. = 300mm ' = 210mm		
MIC-S90-BH- 500	13666g					included new connector	
MIC-S90-BH- 750	16052g				naruware		
MIC-S90-BH-1000	18439g					a lega and	
MIC-590-BH-1500	23213g					and a start of the	
MIC-390-DIT-2000	279009				1	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	
Submittal text: Hilti Hot-dipped galvanize The fixation could be dor First principle is clamping structural steel profile.	ed bracket used a ne by two different g, using four bean	is fixed to structur t principles. n clams clamped o	al steel profiles. on flange of the		Designatio VIC-S90-B VIC-S90-B MIC-S90-E MIC-S90-E MIC-S90-E	n L[mm] 3H- 500 500 3H- 750 750 3H-1000 1000 3H-1500 1500 3H-2000 2000	
Material properties							
Material	Y	ield strength	Ultimate strength	Modulus of el	lasticity	Shear modulus	
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)		$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	E = 210000	$\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$	
Girder DD11 MOD (EN 10111)	nd Shear Modulus are a	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000	$\frac{N}{mm^2}$	$\mathbf{G} = 80769 \frac{N}{mm^2}$	

city and She ar modulus are according to

Instruction For Use:

No IFU attached to the packaging

For clamped loading case

For boxed loading case (not attached to the packaging)

Possible loading cases				
Clamped	Boxed			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

В

Software:

- Ansys 18.2
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30'
- Published allowable loa
- including those resulting Simplified drawing:

B = 350mm

- X = 300mm
- Y = 210mm

Designation	L[mm]	A A A A A A A A A A A A A A A A A A A
MIC-S90-BH- 500	500	
MIC-S90-BH- 750	750	ALL
MIC-S90-BH-1000	1000	
MIC-S90-BH-1500	1500	(–
MIC-S90-BH-2000	2000	17x64

conditions. Non-static forces, en into account during design.

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 200

15

155

220

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

	+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
(72.00	101.54	57.20	57.20	57.20	57.20
	+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
	4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel **Interaction:**

F _{xEd}	Fy.Ed	F _{z.Ed}	M _{xEd}	My.Ed	M _{z.Ed}
FxRd	F _{v.Rd} +	F _{z.Rd} +	M _{xRd}	M _{v.Rd}	M _{z.Rd} ≥ 1

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84

Interaction:

 $\frac{F_{\mathbf{x}} \underline{Ed}}{F_{\mathbf{x}} \underline{Rd}} + \frac{F_{\mathbf{y}} \underline{Ed}}{F_{\mathbf{y}} \underline{Rd}} + \frac{F_{\mathbf{z}} \underline{Ed}}{F_{\mathbf{z}} \underline{Rd}} + \frac{M_{\mathbf{x}} \underline{Ed}}{M_{\mathbf{x}} \underline{Rd}} + \frac{M_{\mathbf{y}} \underline{Ed}}{M_{\mathbf{y}} \underline{Rd}} + \frac{M_{\mathbf{z}} \underline{Ed}}{M_{\mathbf{z}} \underline{Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 202

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.12	1.12	7.37	7.37	6.81	6.81

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

MIC-S90-BH-500-2000 Bracket - Steel

Loading case: Boxed	Combinations covered by loading case
BOM: Brackets: 1x MIC-S90-BH- 500 2203587 MIC-S90-BH- 750 2203588 MIC-S90-BH-1000 2203589 MIC-S90-BH-1500 2203590 MIC-S90-BH-2000 2203591 Base plate 1174675 1x MIB-SBH 2174675 Threaded rods cut to particular length 4x AM16x1000 8.8 HDGm 4x AM16x1000 8.8 HDGm 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 304767	Pre-fab bracket for perpendicular connection to structural steel Profiles boxing it with two base plates. Flange width 165-235mm.

Recommended loading capacity - simplified for most common applications						
Method		±Fx,rec. [kN]	\pm Fy,rec. [kN]	±Fz,rec. [kN]		
Vield strength		49.93	13.34	13.34		
Characteristic load	z					
Action Resistance	These values are individual one directional maximal ouse design values and their corresponding interaction	capacity limits. For formulas.	any combinations of	of multiple directions,		

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
74.90	101.54	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
285.11	285.11	116.39	116.39	116.39	116.39	
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
9.54	9.54	6.84	6.84	6.84	6.84	
nteraction:						

 $\frac{F_{\mathbf{x}} \underline{Ed}}{F_{\mathbf{x}} \underline{Rd}} + \frac{F_{\mathbf{y}} \underline{Ed}}{F_{\mathbf{y}} \underline{Rd}} + \frac{F_{\mathbf{z}} \underline{Ed}}{F_{\mathbf{z}} \underline{Rd}} + \frac{M_{\mathbf{x}} \underline{Ed}}{M_{\mathbf{x}} \underline{Rd}} + \frac{M_{\mathbf{y}} \underline{Ed}}{M_{\mathbf{y}} \underline{Rd}} + \frac{M_{\mathbf{z}} \underline{Ed}}{M_{\mathbf{z}} \underline{Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

3. Base plate and through bolts - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
158.80	Not decisive	20.01	20.01	20.01	20.01
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.06	2.06	11.27	11.27	10.56	10.56

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{x Ed}}{F_{x Rd}} + \frac{M_{y Ed}}{M_{y Rd}} + \frac{M_{z Ed}}{M_{z Rd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Designation MIC-S90-CH- 500 MIC-S90-CH- 750 MIC-S90-CH-1000 MIC-S90-CH-1500 MIC-S90-CH-2000			tem number 2203592 2203593 2203594 2203595 2203596			B > 10 minutes	15
Corrosion protection:		7ine thickness min			Va		220
wateriai	HDG per	zinc thickness, min (μm)				17×64	
Bracket	ISO 1461	55			B = 430mm	ı	
Weight:					X = 350 mm	1	
MIC-S90-CH- 500	15808g				1 - 2901111	I	
MIC-S90-CH- 750	18195g				Hardware	included p	er connector
MIC-S90-CH-1000	20582g					0	0
MIC-S90-CH-1500	25355g					1	
MIC-S90-CH-2000	30129g				1	111100	0
Submittal text: Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles. First principle is clamping, using four beam clams clamped on flange of the structural steel profile.					Designatic MIC-S90-0 MIC-S90-0 MIC-S90-0 MIC-S90-0 MIC-S90-0	on CH- 500 CH- 750 CH-1000 CH-1500 CH-2000	L[mm] 500 750 1000 1500 2000
Material properties							
Material		Yield strength	Ultimate strength	Modulus of	elasticity	Shear	modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)		$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 2100	$00 \frac{N}{mm^2}$	G = 8	$30769 \frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)		$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 2100	$00 \frac{N}{mm^2}$	G = 8	$30769 \frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

No IFU attached to the packaging For clamped loading case Fo

ase For boxed loading case (not attached to the packaging)

Installation Technical Manual - Technical Data - MI system

Possible loading cases				
Clamped	Boxed			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.
 Simplified drawing:

Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case		
BOM: Brackets: 1x MIC-S90-CH- 500 2203592 MIC-S90-CH- 750 2203593 MIC-S90-CH-1000 2203594 MIC-S90-CH-1500 2203595 MIC-S90-CH-2000 2203596 Beam clamps 387398	Pre-fab bracket for perpendicular connection to structural steel profiles flanges. Flange width 235-300mm.		

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 209

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
44.90	101.54	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel Interaction:

F _{xEd}	Fy.Ed	F _{z.Ed}	M _{xEd}	My.Ed	M _{z.Ed}	< 1
F _{xRd} '	Fy.Rd	F _{z.Rd}	M _{xRd}	My.Rd	M _{z.Rd}	

2. Welds – per analytical calculation

_							
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
	285.11	285.11	116.39	116.39	116.39	116.39	
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
	9.54	9.54	6.84	6.84	6.84	6.84	
Interaction:							
$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$							

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 210

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.41	1.41	7.37	7.37	8.45	8.45

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Loading case: Boxed		Combinations covered by loading case	
BOM: Brackets: 1x MIC-S90-CH- 500 22 MIC-S90-CH- 750 22 MIC-S90-CH-1500 22 MIC-S90-CH-1500 22 MIC-S90-CH-2000 22 Base plate 1x MIB-SBH Threaded rods cut to particular let 4x AM16x1000 8.8 HDGm Lock washer 8x LW M16 HDG plus washer Nut 8x M16-F nut	2203592 2203593 2203594 2203595 2203596 2174675 ength 419104 2185343 304767	Pre-fab bracket for perpendicular connection to structural steel Profiles boxing it with two base plates. Flange width 235-300mm.	

Recommended loading capacity - simplified for most common applications								
Method	x x	±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]				
Yield strength		31.27	12.67	12.67				
Permissible stress Capacity limit			±My,rec. [kNm]					
Live load		•	4.05					
Action Resistance	These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.							

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
46.90	91.00	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel Interaction:

 $\frac{F_{\mathbf{x}\mathbf{Ed}}}{F_{\mathbf{x}\mathbf{Rd}}} + \frac{F_{\mathbf{y}\cdot\mathbf{Ed}}}{F_{\mathbf{y}\cdot\mathbf{Rd}}} + \frac{F_{\mathbf{z}\cdot\mathbf{Ed}}}{F_{\mathbf{z}\cdot\mathbf{Rd}}} + \frac{M_{\mathbf{x}\cdot\mathbf{Ed}}}{M_{\mathbf{x}\cdot\mathbf{Rd}}} + \frac{M_{\mathbf{y}\cdot\mathbf{Ed}}}{M_{\mathbf{y}\cdot\mathbf{Rd}}} + \frac{M_{\mathbf{z}\cdot\mathbf{Ed}}}{M_{\mathbf{z}\cdot\mathbf{Rd}}} \leq 1$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84

Interaction:

 $\frac{F_{\mathbf{x}} \underline{Ed}}{F_{\mathbf{x}} \underline{Rd}} + \frac{F_{\mathbf{y}} \underline{Ed}}{F_{\mathbf{y}} \underline{Rd}} + \frac{F_{\mathbf{z}} \underline{Ed}}{F_{\mathbf{z}} \underline{Rd}} + \frac{M_{\mathbf{x}} \underline{Ed}}{M_{\mathbf{x}} \underline{Rd}} + \frac{M_{\mathbf{y}} \underline{Ed}}{M_{\mathbf{y}} \underline{Rd}} + \frac{M_{\mathbf{z}} \underline{Ed}}{M_{\mathbf{z}} \underline{Rd}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 213

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

3. Base plate and through bolts - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
150.80	Not decisive	19.00	19.00	19.00	19.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.57	2.57	10.71	10.71	12.44	12.44

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{x Ed}}{F_{x Rd}} + \frac{M_{y Ed}}{M_{y Rd}} + \frac{M_{z Ed}}{M_{z Rd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Designation MIC-S120-AH- 500 MIC-S120-AH- 750 MIC-S120-AH-1000 MIC-S120-AH-1500 MIC-S120-AH-2000		 	tem number 2203597 2203598 2203599 2203600 2203601	L	B 15 155 220
Material	HDG per	Zinc thickness, min		•	
		(μm)		D - 000-	17x64
Bracket	ISO 1461	55		B = 280r	nm
Weight: MIC-S120-AH- 500 MIC-S120-AH- 750 MIC-S120-AH-1000 MIC-S120-AH-1500 MIC-S120-AH-2000	13374g 16562g 19750g 26125g 32500g			Y = 140r Hardwa	re included per connector
Submittal text: Hilti Hot-dipped galvanize The fixation could be dor First principle is clamping structural steel profile.	ed bracket us ne by two diff g, using four l	sed as fixed to structu erent principles. beam clams clamped	ral steel profiles. on flange of the	Designa MIC-S1 MIC-S1 MIC-S1 MIC-S1 MIC-S1	ation L[mm] 20-AH- 500 500 20-AH- 750 750 20-AH-1000 1000 20-AH-1500 1500 20-AH-2000 2000
Material properties					
Material		Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)		$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder		$f_v = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

No IFU attached to the packaging

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases		
Clamped	Boxed	

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation •

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Microsoft Excel
- Mathcad 15 .

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, ٠ including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case
BOM: Brackets: 1x MIC-S120-AH- 500 2203597 MIC-S120-AH- 750 2203598 MIC-S120-AH- 1000 2203599 MIC-S120-AH-1500 2203600 MIC-S120-AH-1500 2203600 MIC-S120-AH-2000 2203600 MIC-S120-AH-2000 2203601 Beam clamps 387398	Pre-fab bracket for perpendicular connection to structural steel profiles flanges. Flange width 75-165mm.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
105.20	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	10.17	10.17	8.03	8.03

includes cross section resistance of steel base plate and channel Interaction:

 $\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y}Ed}{F_{y}Rd} + \frac{F_{z}Ed}{F_{z}Rd} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y}Ed}{M_{y}Rd} + \frac{M_{z}Ed}{M_{z}Rd} \leq 1$

2. Welds – per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
13.34	13.34	11.91	11.91	10.28	10.28
Interaction:					
$\frac{F_{xEd}}{F_{y,Ed}} + \frac{F_{y,Ed}}{F_{y,Ed}} + \frac{F_{z,Ed}}{F_{z,Ed}} + \frac{M_{xEd}}{M_{y,Ed}} + \frac{M_{y,Ed}}{M_{y,Ed}} + \frac{M_{z,Ed}}{M_{z,Ed}} \le 1$					

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 218

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.84	0.84	7.37	7.37	4.25	4.25

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Loading case: Boxed	Combinations covered by loading case
BOM: Brackets: 1x MIC-S120-AH- 500 2203597 MIC-S120-AH- 750 2203598 MIC-S120-AH-1000 2203599 MIC-S120-AH-1500 2203600 MIC-S120-AH-2000 2203601 Hardware not included in packaging: Base plate 1x MIB-SAH 2174674 Threaded rods cut to particular length 4x AM16x1000 8.8 HDGm 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut 304767	Pre-fab bracket for perpendicular connection to structural steel Profiles boxing it with two base plates. Flange width 75-165mm.

Recommended loading capacity - simplified for most common applications					
y x	±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]		
z	78.13	13.77	13.77		
		±My,rec. [kNm]			
		7.00			
These values are individual one directional maximal or use design values and their corresponding interaction	apacity limits. For a formulas.	any combinations of	multiple directions,		
	ed for most common a	ed for most common applicat Fx,rec. [kN] 78.13 These values are individual one directional maximal capacity limits. For a use design values and their corresponding interaction formulas.	ed for most common applications $\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$		

Design loading capacity - 3D	1/3
Method	
Design tool Live bool Live bool And a month of Live bool And a month of Live bool And a month of Live bool	

Limiting components of capacity evaluated in following tables:

1. Bracket per FEA simulation

3. Base plate and through bolts - per analytical calculation

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those ٠ resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
117.20	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	10.51	10.51	8.03	8.03

includes cross section resistance of steel base plate and channel Interaction:

```
\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1
```

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
13.34	13.34	11.91	11.91	10.28	10.28
Interaction: $F_{xEd} + \frac{F_{yEd}}{F_{xEd}} + \frac{M_{xEd}}{F_{xEd}} + \frac{M_{yEd}}{F_{xEd}} + \frac{M_{zEd}}{F_{xEd}} \le 1$					
$\frac{1}{F_{xRd}} + \frac{1}{F_{xRd}} + \frac{1}{M_{xRd}} + \frac{1}{M_{yRd}} + \frac{1}{M_{zRd}} \le 1$					

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 221

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

3. Base plate and through bolts - per analytical calculation

-					
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
164.00	Not decisive	20.66	20.66	20.66	20.66
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.67	1.67	11.64	11.64	6.81	6.81

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{x\,Ed}}{F_{x\,Rd}} + \frac{M_{y\,Ed}}{M_{y\,Rd}} + \frac{M_{z\,Ed}}{M_{z\,Rd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Designation MIC-S120-BH- 500 MIC-S120-BH- 750 MIC-S120-BH-1000 MIC-S120-BH-1500 MIC-S120-BH-2000			tem number 2203602 2203603 2203604 2203605 2203606		B Y 15 155
Material	HDG per	Zinc thickness, min		A.	
					17x64
Bracket	ISO 1461	55		B = 350m	m
Weight: MIC-S120-BH- 500 MIC-S120-BH- 750 MIC-S120-BH-1000 MIC-S120-BH-1500 MIC-S120-BH-2000	15267g 18455g 21642g 28018g 34393g			X = 300m Y = 210m Hardwar	m m e included per connector
Submittal text: Hilti Hot-dipped galvaniz The fixation could be dor First principle is clamping structural steel profile.	ed bracket use ne by two differ g, using four be	d as fixed to structu ent principles. eam clams clamped	ral steel profiles. on flange of the	Designat MIC-S12 MIC-S12 MIC-S12 MIC-S12 MIC-S12	ion L[mm] 0-BH- 500 500 0-BH- 750 750 0-BH-1000 1000 0-BH-1500 1500 0-BH-2000 2000
Material properties					
Material		Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)		$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)		$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Values for Modulus of Élasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

No IFU attached to the packaging

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases			
Clamped	Boxed		

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation •

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Microsoft Excel
- Mathcad 15 .

Validity:

Temperature limits: -30°C (-22°F) to +93°C (200°F).

P

Published allowable loads for applications are based on static loading conditions. Non-static forces, ٠ including those resulting from thermal or other expansion must be taken into account during design. Simplified drawing:

Installation Technical Manual - Technical Data - MI system

1.5

MIC-S120-BH-500-2000 Bracket - Steel

Loading case: Clamped	Combinations covered by loading case
BOM: Brackets: 1x MIC-S120-BH- 500 2203602 MIC-S120-BH- 750 2203603 MIC-S120-BH-1000 2203604 MIC-S120-BH-1500 2203605 MIC-S120-BH-1500 2203605 MIC-S120-BH-2000 2203606 Beam clamps 4x MI-SGC M16	Pre-fab bracket for perpendicular connection to structural steel profiles flanges. Flange width 165-235mm.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
71.90	132.97	62.60	62.60	94.80	94.80
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
6.80	6.80	8.80	8.80	8.03	8.03

includes cross section resistance of steel base plate and channel Interaction:

F _{xEd}	Fy.Ed	F _{z.Ed}	M _{xEd}	My.Ed	M _{z.Ed}	< 1
FxRd	Fy.Rd	F _{z.Rd}	M _{xRd}	My.Rd	M _{z.Rd}	

2. Welds - per analytical calculation

+Fx,Rd [kN]-Fx,Rd [kN]+Fy,Rd [kN]-Fy,Rd [kN]+Fz,Rd [kN]-Fz,Rd [kN]								
346.20 346.20 116.39 116.39 166.28 166.28								
+Mx,Rd -Mx,Rd +My,Rd -My,Rd +Mz,Rd -Mz,Rd [kNm] [kNm] [kNm] [kNm] [kNm] [kNm]								
13.34 13.34 11.91 11.91 10.28 10.28								
Interaction:								
$\frac{F_{xEd}}{F_{xPd}} + \frac{F_{yEd}}{F_{xPd}} + \frac{F_{zEd}}{F_{xPd}} + \frac{M_{xEd}}{M_{xPd}} + \frac{M_{yEd}}{M_{xPd}} + \frac{M_{zEd}}{M_{xPd}} \le 1$								

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 226

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.12	1.12	7.37	7.37	6.81	6.81

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Loading case: Boxed	Combinations covered by loading case
BOM: Brackets: 1x MIC-S120-BH- 500 2203602 MIC-S120-BH- 750 2203603 MIC-S120-BH-1000 2203604 MIC-S120-BH-1500 2203606 Hardware not included in packaging: Base plate Hardware not included in packaging: Base plate 1x MIB-SAH 2174674 Threaded rods cut to particular length 4x AM16x1000 8.8 HDGm 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut	Pre-fab bracket for perpendicular connection to structural steel Profiles boxing it with two base plates. Flange width 165-235mm.

Recommended loading capacity - simplified for most common applications							
y x	±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]				
Z	51.40	13.34	13.34				
		±My,rec. [kNm]					
		6.18					
These values are individual one directional maximal or use design values and their corresponding interaction	apacity limits. For a formulas.	any combinations of	multiple directions,				
	ed for most common a	the d for most common applicat	ed for most common applications $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$				

Method	Design loading capacity - 3D	1/3
Vidid strungth Onsign Nadl Design Nadl capacity first Design Nadl 1.5	Method	
	Design had Design had Design had T Design had Design had	

Limiting components of capacity evaluated in following tables:

1. Bracket per FEA simulation

3. Base plate and through bolts - per analytical calculation

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
77.10	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	9.27	9.27	8.03	8.03

includes cross section resistance of steel base plate and channel Interaction:

 $\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1$

 $\frac{F_{\mathbf{x}}\mathbf{Ed}}{F_{\mathbf{x}}\mathbf{Rd}} + \frac{F_{\mathbf{y}}\mathbf{.Ed}}{F_{\mathbf{y}}\mathbf{.Rd}} + \frac{F_{\mathbf{z}}\mathbf{.Ed}}{F_{\mathbf{z}}\mathbf{.Rd}} + \frac{M_{\mathbf{x}}\mathbf{Ed}}{M_{\mathbf{x}}\mathbf{.Rd}} + \frac{M_{\mathbf{y}}\mathbf{.Ed}}{M_{\mathbf{y}}\mathbf{.Rd}} + \frac{M_{\mathbf{z}}\mathbf{.Ed}}{M_{\mathbf{z}}\mathbf{.Rd}} \leq 1$

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]		
346.20	346.20	116.39	116.39	166.28	166.28		
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]		
13.34	13.34	11.91	11.91	10.28	10.28		
Interaction:							

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 229

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

3. Base plate and through bolts - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
158.80	Not decisive	20.01	20.01	20.01	20.01
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.06	2.06	11.27	11.27	10.56	10.56

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{x \, Ed}}{F_{x \, Rd}} + \frac{M_{y \, Ed}}{M_{y \, Rd}} + \frac{M_{z \, Ed}}{M_{z \, Rd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Designation MIC-S120-CH- 500 MIC-S120-CH- 750 MIC-S120-CH-1000 MIC-S120-CH-1500 MIC-S120-CH-2000			Item number 2203607 2203608 2203609 2203570 2203571		B Y 15 155 220
Material	HDG per	Zinc thickness, mi	n.	-	
Bracket	ISO 1461	(μm) 55		B = 430m	17X64 Š
Weight: MIC-S120-CH- 500 MIC-S120-CH- 750 MIC-S120-CH-1000 MIC-S120-CH-1500 MIC-S120-CH-2000	17410g 20597g 23785g 30160g 36535g			X = 350m Y = 290m Hardward	m e included per connector
Submittal text: Hilti Hot-dipped galvanize The fixation could be dor First principle is clamping structural steel profile.	ed bracket use he by two diffe g, using four b	ed as fixed to struct erent principles. beam clams clampe	ural steel profiles. d on flange of the	Designat MIC-S12 MIC-S12 MIC-S12 MIC-S12 MIC-S12 MIC-S12	ion L[mm] D-CH- 500 500 D-CH- 750 750 D-CH-1000 1000 D-CH-1500 1500 D-CH-2000 2000
Material properties					
Material		Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)		$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)		$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Values for Modulus of Élasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations

Instruction For Use:

No IFU attached to the packaging

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases				
Clamped	Boxed			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation •

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

- Ansys 18.2
- Microsoft Excel
- Mathcad 15 .

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, ٠ including those resulting from thermal or other expansion must be taken into account during design. Simplified drawing:

X = 300mm

```
Y = 210mm
```


Installation Technical Manual - Technical Data - MI system

Loading case: Clamped	Combinations covered by loading case
BOM: Brackets: 1x MIC-S120-CH- 500 2203607 MIC-S120-CH- 750 2203608 MIC-S120-CH-1000 2203609 MIC-S120-CH-1500 2203570 MIC-S120-CH-2000 2203571 Beam clamps 387398	Pre-fab bracket for perpendicular connection to structural steel profiles flanges. Flange width 235-300mm.

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
47.70	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	8.03	8.03	8.03	8.03

includes cross section resistance of steel base plate and channel Interaction:

^r xEd	ry.Ed	^F z.Ed	MxEd	My.Ed	Mz.Ed <	1
F _{xRd}	F _{y.Rd}	F _{z.Rd}	M _{xRd}	My.Rd	M _{z.Rd}	1

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]	
346.20	346.20	116.39	116.39	166.28	166.28	
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]	
13.34	13.34	11.91	11.91	10.28	10.28	
Interaction:						
$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$						

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 234

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

_						
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	102.40	Not decisive	10.31	10.31	10.31	10.31
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
	1.41	1.41	7.37	7.37	8.45	8.45

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Installation Technical Manual - Technical Data - MI system

Loading case: Boxed	Combinations covered by loading case
BOM: Brackets: 1x MIC-S120-CH- 500 2203607 MIC-S120-CH- 750 2203608 MIC-S120-CH-1000 2203609 MIC-S120-CH-1500 2203570 MIC-S120-CH-2000 2203571 Hardware not included in packaging: Base plate 1x MIB-SAH 2174674 Threaded rods cut to particular length 4x AM16x1000 8.8 HDGm 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut 304767	Pre-fab bracket for perpendicular connection to structural steel Profiles boxing it with two base plates. Flange width 235-300mm.

Recommended loading capacity - simplified for most common applications							
y x	±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]				
z	32.73	12.67	12.67				
	±My,rec. [kNm]						
		5.48					
These values are individual one directional maximal c use design values and their corresponding interaction	apacity limits. For a formulas.	any combinations of	multiple directions,				
	ed for most common a	these values are individual one directional maximal capacity limits. For a use design values and their corresponding interaction formulas.	the d for most common applications $\begin{array}{c} \downarrow & \downarrow &$				

Design loading capacity - 3D	1/3
Method	
Cesign teat Cesign teat Cesig	
Action Designation	

Limiting components of capacity evaluated in following tables:

1. Bracket per FEA simulation

3. Base plate and through bolts - per analytical calculation

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
49.10	97.70	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	8.22	8.22	8.03	8.03

includes cross section resistance of steel base plate and channel Interaction:

```
\frac{F_{\mathbf{x}}Ed}{F_{\mathbf{x}}Rd} + \frac{F_{\mathbf{y}}Ed}{F_{\mathbf{y}}Rd} + \frac{F_{\mathbf{z}}Ed}{F_{\mathbf{z}}Rd} + \frac{M_{\mathbf{x}}Ed}{M_{\mathbf{x}}Rd} + \frac{M_{\mathbf{y}}Ed}{M_{\mathbf{y}}Rd} + \frac{M_{\mathbf{z}}Ed}{M_{\mathbf{z}}Rd} \leq 1
```

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]			
346.20	346.20	116.39	116.39	166.28	166.28			
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]			
13.34	13.34	11.91	11.91	10.28	10.28			
Interaction:								

 $\frac{F_{\mathbf{x}\mathbf{Ed}}}{F_{\mathbf{x}\mathbf{Rd}}} + \frac{F_{\mathbf{y}.\mathbf{Ed}}}{F_{\mathbf{y}.\mathbf{Rd}}} + \frac{F_{\mathbf{z}.\mathbf{Ed}}}{F_{\mathbf{z}.\mathbf{Rd}}} + \frac{M_{\mathbf{x}\mathbf{Ed}}}{M_{\mathbf{x}\mathbf{Rd}}} + \frac{M_{\mathbf{y}.\mathbf{Ed}}}{M_{\mathbf{y}.\mathbf{Rd}}} + \frac{M_{\mathbf{z}.\mathbf{Ed}}}{M_{\mathbf{z}.\mathbf{Rd}}} \leq 1$

Installation Technical Manual - Technical Data - MI system

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 237

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those
 resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

3. Base plate and through bolts - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
150.80	Not decisive	19.00	19.00	19.00	19.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.57	2.57	10.71	10.71	12.44	12.44

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{x \, Ed}}{F_{x \, Rd}} + \frac{M_{y \, Ed}}{M_{y \, Rd}} + \frac{M_{z \, Ed}}{M_{z \, Rd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Data version 2.1 I Date 10.2018

Installation Technical Manual - Technical Data - MI system

Hilti Aktiengesellschaft 9494 Schaan, Liechtenstein P +423-234 2965

www.facebook.com/hiltigroup www.hilti.group