

HIT-1 INJECTION MORTAR

Technical Datasheet Update: Jan-23

HIT-1 / HIT-1 CE injection mortar

Anchor design (EN 1992-4) / Rods / Concrete

Injection mo	ortar system			Benefits
			Hilti HIT-1 / HIT-1 CE 300 ml tube cartridge	 Chemical injection fastening Two-component hybrid mortar Rapid curing Suitable for overhead fastenings Versatile and convenient handling Clean and simple in use Small edge distance and anchor
			Anchor rods: HAS-U HAS-U HDG HAS-U A4 HAS-U HCR (M8-M16)	spacing - Always correct mixing ratio - In-service temperatures:
Base materi	al		Load conditions	5
Concrete (non-cracked)	Dry concrete	Wet concrete	Static/ quasi-static	
Installation	conditions		Other information	on

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue			
European Technical Assessment ^{a)}	TTIC, Prague	ETA-17/0005 / 2017-02-20			
r = 1000					

a) All data given in this section according to ETA-17/0005, issue 2017-02-20.

Static and quasi-static loading (for a single anchor)

All data in this section applies to

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the table
- Embedment depth as specified in the table
- Load values valid for holes drilled with TE rotary hammers in hammering mode
- Diamond coring is not permitted
- Concrete C 20/25, f_{ck,cube} = 25 N/mm²
- In-service temperature range I

(min. base material temperature -40°C, max. long/short term base material temperature: +24°C/+40°C)

Embedment depth ^{a)} and base material thickness

Anchor size				M8			M10			M12			M16	
Embedment depth b)	h _{ef}	[mm]	60	80	160	60	100	200	70	120	240	80	160	320
Base material thickness	h	[mm]	100	110	190	100	130	210	100	150	270	116	196	356

a) The allowed range of embedment depth is shown in the setting details

b) Recommended loads calculated for embedment depths $h_{ef} = h_{ef,min}$; $h_{ef} = 10d$; $h_{ef} = h_{ef,max} = 20d$

Recommended loads

Anchor size M8				M10			M12		M16						
Non-crack	ked concrete														
Tension	HAS-U 5.8	Nrec	[kN]	4,2	5,6	8,7	5,2	8,7	13,8	7,3	12,6	20,1	9,6	19,1	37,4
Shear	HAS-U 5.8	Vrec	[kN]		5,2			8,3			12,0			22,4	

Materials

Mechanical properties

Anchor size				M8	M10	M12	M16
	HAS-U 5.8			500	500	500	500
Nominal tensile strength	HAS-U 8.8	4	[N] /	800	800	800	800
Nominal tensile strength	HAS-U-R	f _{uk}	[N/mm²]	700	700	700	700
	HAS-U-HCR			800	800	800	800
	HAS-U 5.8			400	400	400	400
Viold atranath	HAS-U 8.8	f.	[N/mm²]	640	640	640	640
Yield strength	HAS-U-R	f _{yk}		450	450	450	450
	HAS-U-HCR			640	640	640	640
Stressed cross-section	HAS-U	As	[mm²]	36,6	58,0	84,3	157
Moment of resistance	HAS-U	W	[mm³]	31,2	62,3	109	277

Material quality for HAS-U

Part	Material
Zinc coated steel	
Threaded rod, HAS-U 5.8 (HDG)	Strength class 5.8; Elongation at fracture A5 > 8% ductile Electroplated zinc coated $\ge 5\mu$ m; (HDG) hot dip galvanized $\ge 45\mu$ m
Threaded rod, HAS-U 8.8 (HDG)	Strength class 8.8; Elongation at fracture A5 > 12% ductile Electroplated zinc coated $\ge 5\mu$ m; (HDG) hot dip galvanized $\ge 45 \mu$ m
Washer	Electroplated zinc coated \geq 5 µm, hot dip galvanized \geq 45 µm
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated $\ge 5\mu$ m, hot dip galvanized $\ge 45\mu$ m
Stainless Steel	
Threaded rod, HAS-U A4	Strength class 70 for M8-M16 Elongation at fracture A5 > 8% ductile Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Nut	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
High corrosion resistant s	steel
Threaded rod, HAS-U HCR	Strength class 80 for M8-M16 Elongation at fracture A5 > 8% ductile High corrosion resistance steel 1.4529; 1.4565;
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Nut	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014

Setting information

Installation temperature range:

-5°C to +40°C

Service temperature range

Hilti HIT-1 / HIT-1 CE injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C
Temperature range II	-40 °C to +80 °C	+50 °C	+80 °C

Maximum short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Maximum long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Working time and curing time ^a):

Temperature of the base material	Maximum working time	Minimum curing time
Т _{вм}	t _{work}	t _{cure}
-5°C ≤ T _{BM} < 0°C	1,5 h	6 h
0°C ≤ T _{BM} < 5°C	45 min	3 h
5°C ≤ T _{BM} < 10°C	25 min	2 h
10°C ≤ T _{BM} < 15°C	20 min	100 min
15°C ≤ T _{BM} < 20°C	15 min	80 min
20°C ≤ T _{BM} < 30°C	6 min	45 min
30°C ≤ T _{BM} < 34°C	4 min	25 min
35°C ≤ T _{BM} < 40°C	2 min	20 min

a) The curing time data are valid for dry base material only. In wet base material the curing times must be doubled

Setting details

Anchor size			M8	M10	M12	M16
Nominal diameter of element	d	[mm]	8	10	12	16
Nominal diameter of drill bit	do	[mm]	10	12	14	18
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18
Effective anchorage depth	$h_{ef,min} = h_0$	[mm]	60	60	70	80
(= drill hole depth)	$h_{ef,max} = h_0$	[mm]	160	200	240	320
Minimum base material thickness	h _{min}	[mm]	h _{ef} +	- 30 mm ≥ 100	mm	h _{ef} + 2d ₀
Maximum torque moment	T _{max}		10	20	40	80
Minimum spacing	Smin	[mm]	40	50	60	80
Minimum edge distance	Cmin	[mm]	40	50	60	80

Installation equipment

Anchor size	M8	M10	M12	M16		
Rotary hammer	TE2(-A) – TE30(-A)					
		Blow out pur	np (h _{ef} ≤ 10·d)			
Other tools	Compressed air gun ^{b)}					
	Set of cleaning brushes ^{c)} , dispenser, piston plug					
a) Compressed air gun with extension hose for all drill holes de	eper than 250 mm	(for M8 to M12) o	r deener than 20.4	$(for \phi > 12 mm)$		

a) Compressed air gun with extension hose for all drill holes deeper than 250 mm (for M8 to M12) or deeper than 20·φ (for φ > 12 mm)
 b) Automatic brushing with round brush for all drill holes deeper than 250 mm (for M8 to M12) or deeper than 20·φ (for φ > 12 mm)

Parameters of cleaning and setting tools

	Drilling an	Installation	
HAS-U	Hammer drilling	Brush HIT-RB	Piston plug HIT-SZ
	d₀ [mm]	size [mm]	size [mm]
adimanana 🖂			
M8	10	10	10
M10	12	12	12
M12	14	14	14
M16	18	18	18

Setting instructions

*For detailed information on installation see instruction for use given with the package of the product.

Safety regulations.

Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-1 / HIT-1 CE.

Drilling

Hammer drilled hole (HD) For dry and wet concrete only

machine brushing (CACMB)

depth h_{0.}

For drill diameters do and all drill hole

Cleaning

Injection system

Depressurization of the dispenser.

Injection method for overhead application and/or installation with embedment depth $h_{ef} > 250$ mm.

Setting the element

HIT-1 / HIT-1 CE injection mortar

Anchor design (ETAG 029) / Rods and Sleeves / Masonry

Injection mortar system

Hilti HIT-1 / HIT-1 CE

300 ml tube cartridge

Anchor rods: HAS-U HAS-U HDG HAS-U A4 HAS-U HCR (M8-M12)

Sieve sleeve: HIT-SC (16) bricksTwo-component hybrid mortarRapid curingSuitable for overhead fastenings

- Hollow and solid masonry: clay

Benefits

- Versatile and convenient handling
- Flexible setting depth and fastening thickness
- Small edge distance and anchor spacing
- Mortar filling control with HIT-SC sleeves

Base material

Solid bricks Hollow

Hollow bricks

quasi-static

Installation conditions

Hammer/rotary drilling

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
Hilti Technical Data ^{a)}	Hilti	2017-11-28

b) All data given in this section according to Hilti Technical Data.

Static and quasi-static loading (for a single anchor)

All data in this section applies to

- Load values valid for holes drilled with TE rotary hammers in hammer mode for solid bricks
- Load values valid for holes drilled with TE rotary hammers in rotary mode for hollow bricks
- Correct anchor setting (see instruction for use, setting details)
- Steel quality of fastening elements: see data below
- Threaded rods of appropriate size (diameter and length) and a minimum steel quality of 5.6 can be used
- Base material temperature during installation and curing must be between 0°C through +40°C
- In-service temperature ranges:
 - Ta = -40°C to +40°C (max. long term temperature +24 °C and max.short term temperature +40 °C)

Tb = -40°C to +80°C (max. long term temperature +50 °C and max.short term temperature +80 °C)

Recommended loads for solid and hollow bricks

	Anchor size		h _{ef} [mm]	fb		
Load type				ть [N/mm²]	Та	Tb
		[]	[]	Loads [kN]		
	Solid clay brick		T	T		
	HAS-U	M8	80		0,7	0,4
		M10	90	28	0,7	0,4
N _{Rec}		M12	100		0,7	0,4
INREC		M8			0,9	0,6
	HAS-U + HIT-SC M16x85	M10	80	28	0,9	0,6
		M12			0,9	0,6
		M8	80		1,3	
	HAS-U	M10	90	28	1,7	
		M12	100		2,5	
V _{Rec}	HAS-U + HIT-SC M16x85	M8	80	28	1,3	
		M10			1,6	
		M12			1,7	
	Hollow brick – HI	z 12	,	1		
	HAS-U + HIT-SC M16x85	M8	80	12	0,35	0,20
NRec		M10			0,35	0,20
		M12			0,45	0,25
V _{Rec}	HAS-U + HIT-SC M16x85	M8, M10, M12	80	12	1,	4
	Hollow brick – Do	oppio Uni		-		
	HAS-U + HIT-SC M16x85	M8	80	28	0,25	0,15
NRec		M10			0,25	0,20
		M12			0,35	0,20
V _{Rec}	HAS-U + HIT-SC M16x85	M8, M10, M12	80	28	0,8	35

Due to the wide variety of bricks, site tests have to be performed for determination of load values for all applications outside of the above mentioned base materials and/or setting conditions.

Materials

Material quality

Part	Material					
Zinc coated steel						
Threaded rod, HAS-U 5.8 (HDG)	Strength class 5.8; Elongation at fracture A5 > 8% ductile Electroplated zinc coated $\ge 5\mu$ m; (HDG) hot dip galvanized $\ge 45 \mu$ m					
Threaded rod, HAS-U 8.8 (HDG)	Strength class 8.8; Elongation at fracture A5 > 12% ductile Electroplated zinc coated $\ge 5\mu$ m; (HDG) hot dip galvanized $\ge 45\mu$ m					
Washer	Electroplated zinc coated \geq 5 µm, hot dip galvanized \geq 45 µm					
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated $\ge 5\mu$ m, hot dip galvanized $\ge 45\mu$ m					
Stainless Steel						
Threaded rod, HAS-U A4	Strength class 70 for M8-M12 Elongation at fracture A5 > 8% ductile Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362					
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
Nut	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
High corrosion resistant	steel					
Threaded rod, HAS-U HCR	Strength class 80 for M8-M12 Elongation at fracture A5 > 8% ductile High corrosion resistance steel 1.4529; 1.4565;					
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014					
Nut	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014					
Sieve sleeve						
HIT-SC sleeve	Frame: FPP 20T, Sieve: PA6,6 N500/200					

Setting information

Installation temperature range:

0°C to +40°C

Service temperature range

Hilti HIT-1 / HIT-1 CE injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature		
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C		
Temperature range II	-40 °C to +80 °C	+50 °C	+80 °C		

Maximum short term base material temperature

Short term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Maximum long term base material temperature

Long term elevated base material temperatures are roughly constant over significant periods of time.

Working time and curing time:

Temperature of the base material	Maximum working time	Minimum curing time		
Т _{вм}	t _{work}	t _{cure}		
0°C ≤ T _{BM} < 5°C	45 min	3 h		
5°C ≤ T _{BM} < 10°C	25 min	2 h		
10°C ≤ T _{BM} < 20°C	15 min	100 min		
20°C ≤ T _{BM} < 30°C	6 min	45 min		
30°C ≤ T _{BM} < 40°C	2 min	25 min		

Setting details for solid bricks

Anchor size			M8		M10		M12	
Sieve sleeve	Hľ	T-SC	-	16x85	-	16x85	-	16x85
Nominal diameter of drill bit	d_0	[mm]	10	16	12	16	14	18
Maximum diameter of clearance hole in the fixture	df	[mm]	9	9	12	12	14	14
Effective anchorage depth	h _{ef}	[mm]	80	80	90	80	100	80
Hole depth	h₀	[mm]	80	95	90	95	100	95
Minimum base material thickness	h _{min}	[mm]	115	115	115	115	115	115
Maximum torque moment	T _{max}	[Nm]	6	6	10	8	10	8

Setting details for hollow bricks

		M8		M10		M12			
Anchor Size			HLZ2	Doppio Uni	HLZ2	Doppio Uni	HLZ2	Doppio Uni	
Sieve sleeve	HI	T-SC	16)	16x85		16x85		16x85	
Nominal diameter of drill bit	d_0	[mm]	1	6	16		18		
Maximum diameter of df [mm] 9		1	12		4				
Effective anchorage depth hef [mm]		8	80		80		80		
Hole depth h ₀ [mm] 95		95		95					
Minimum base material thickness	\mathbf{h}_{min}	[mm]	115		115		115		
Maximum torque moment	T _{max}	[Nm]	4		4		4		

Installation equipment

Anchor – size	M8	M10 M12			
Rotary hammer	TE2(-A) – TE30(-A)				
Other teels	Blow out pump				
Other tools	Set of cleaning brushes, dispenser				

Cleaning and setting parameters for solid and hollow bricks

j		Drilling	Cleaning		
HAS-U	Sieve sleeve HIT-SC	Hammer drilling	Brush HIT-RB		
		d₀ [mm]	size [mm]		
mennenna 🗍 m	***** **				
M8 ^{a)}	-	10	10		
M10 ^{a)}	-	12	12		
M12 ^{a)}	-	14	14		
M8	HIT-SC 16x85	16	16		
M10	HIT-SC 16x85	16	16		
M12	HIT-SC 18x85	18	18		

a) Installation without the sieve sleeve HIT-SC can be used only in case of solid bricks.

Setting instructions

*For detailed information on installation see instruction for use given with the package of the product.

Safety regulations. Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-1 / HIT-1 CE.

Drilling

In hollow bricks: rotary mode

In solid bricks: hammer mode

Cleaning

Instructions for solid bricks without sieve sleeve Injection system

Setting the element

Instructions for hollow and solid bricks with sieve sleeve

Preparation of the sieve sleeve

Close lid and insert sieve sleeve manually

Injection system

Injection system preparation.

Injection system: hollow bricks

Installation with sieve sleeve HIT-SC

Setting the element

 $\label{eq:presetting element} \begin{array}{l} \textbf{Presetting element}, \ \textbf{observe working} \\ \textbf{time "t}_{work"}, \end{array}$

Loading the anchor: After required curing time t_{cure} the anchor can be loaded.