

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0197 of 9 December 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Hilti HIT-HY 170

Injection system for use in masonry

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

26 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal Injection Anchors for Use in Masonry", ETAG 029, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-15/0197 issued on 28 April 2015

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@ dibt.de | www.dibt.de

European Technical Assessment ETA-15/0197 English translation prepared by DIBt

Page 2 of 26 | 9 December 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0197 English translation prepared by DIBt

Page 3 of 26 | 9 December 2015

1 Technical description of the product

The Injection system Hilti HIT-HY 170 for masonry is a bonded anchor (injection type) consisting of a mortar foil pack with injection mortar Hilti HIT-HY 170, a perforated sieve sleeve and an anchor rod with hexagon nut and washer in the range of M8 to M12 or an internal threaded sleeve in the range of M8 to M12. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond and/or mechanical interlock between steel element, injection mortar and masonry.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic resistance for steel elements	See Annex C2	
Characteristic resistance for anchors in masonry units	See Annex C3 – C8	
Displacements under shear and tension loads	See Annex C3 – C8	
Reduction Factor for job site tests (β-Factor)	See Annex C1	
Edge distances and spacing	See Annex C3 – C8	
Group factor for group fastenings	See Annex C3 – C8	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Page 4 of 26 | 9 December 2015

European Technical Assessment ETA-15/0197 English translation prepared by DIBt

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 029, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 December 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Wittstock

Installed condition

Figure A1: Hollow and solid brick with threaded rod, HIT-V-... and sieve sieeve HIT-SC (see Table B5) or with internally threaded sleeve HIT-IC and sieve sleeve HIT-SC (see Table B6)

Figure A2: Solid brick with threaded rod, HIT-V-... (see Table B7)

Figure A3: Solid brick with internally threaded sleeve HIT-IC (see Table B8)

Hilti HIT-HY 170	
Product description	Annex A1
Installed condition.	

Designation	Material
Metal parts made o	f zinc coated steel
Threaded rod HIT-V-5.8(F)	Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) > 8% ductile. Electroplated zinc coated $\ge 5 \mu m$, (F) Hot dip galvanized $\ge 45 \mu m$.
Threaded rod HIT-V-8.8(F)	Strength class 8.8, $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) > 8% ductile. Electroplated zinc coated $\ge 5 \ \mu m$, (F) Hot dip galvanized $\ge 45 \ \mu m$.
Internally threaded sleeve HIT-IC	$ f_{uk} = 490 \text{ N/mm}^2, \ f_{yk} = 390 \text{ N/mm}^2. $ Elongation at fracture (I ₀ = 5d) > 8% ductile. Electroplated zinc coated $\geq 5 \ \mu m. $
Washer	Electroplated zinc coated \geq 5 μ m. Hot dip galvanized \geq 45 μ m.
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated \ge 5 μ m, (F) Hot dip galvanized \ge 45 μ m.
Metal parts made o	f stainless steel
Threaded rod HIT-V-R Strength class 70 $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) > 8% ductile. Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:20	
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014.
Nut	Strength class of nut adapted to strength class of threaded rod Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014.
Metal parts made o	f high corrosion resistant steel
Threaded rod HIT-V-HCR	$f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$. Elongation at fracture ($l_0 = 5d$) > 8% ductile. High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014.
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014.
Nut	Strength class of nut adapted to strength class of threaded rod. High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014.
Plastic parts	
Sieve sleeve HIT-SC	Frame: FPP 20T. Sieve: PA6.6 N500/200.

Hilti HIT-HY 170

Product description Materials.

Annex A3

Deutsches Institut für Bautechnik

Specifications of intended use

Base materials:

- Solid brick masonry (use category b) according to Annex B3.
- Note: The characteristic resistances are also valid for larger brick sizes and larger compressive strengths of the masonry unit.
- Hollow brick masonry (use category c) according to Annex B3 and B5.
- Mortar strength class of the masonry: M2,5 at minimum according to EN 998-2:2010.
- For masonry made of other solid, hollow or perforated bricks, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor given in Annex C1, Table C1.

Anchorages :	subject to:	HIT-HY 170 with threaded rod, HIT-V or HIT-IC				
		in solid bricks	in hollow bricks			
Hole drilling	63335	hammer mode	rotary mode			
Static and quasi static loading		Annex: C2 (steel),	Annex: C2 (steel),			
		C3, C4	C5, C6, C7, C8			
Use category: structure	dry or wet	Category d/d - Installation and use in structures subject to dry internal conditions. Category w/d - Installation in dry or wet substrate and use in structures subject to dry internal conditions Category w/w - Installation and use in structures subject to dry or wet environmental conditions				
Installation dire	ection	horizontal				
Use category		b (solid masonry)	c (hollow or perforated masonry)			
Temperature in the base material at installation		+5 °C to +40 °C (Table B9)	-5 °C to +40 °C (Table B10)			
Temperature In-service range Ta:		-40 °C to +40 °C (max. long term temperature + max. short term temperature -				
temperature	Temperature range Tb:	-40 °C to +80 °C (max. long term temperature +50 max. short term temperature +80				

Table B1: Overview use categories

Hilti HIT-HY 170	
Intended Use	Annex B1
Specifications.	

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal conditions, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist
 - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 supports).
- Anchorages under static or quasi-static loading are designed in accordance with: ETAG 029, Annex C, Design method A.

Installation:

Anchor installation carried out by appropriately qualified personnel and under the supervision of the
person responsible for technical matters of the site.

Hilti HIT-HY 170

Intended Use Specifications. Annex B2

Brick type Picture		Brick size [mm]	Compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex	
Solid clay brick EN 771-1		≥ 240x115x113	12	2,0	СЗ	
Solid calcium silicate brick EN 771-2		≥ 240x115x113	12 / 28	2,0	C4	
Hollow clay brick EN 771-1		300x240x238	12 / 20	1,4	C5	
Hollow calcium silicate brick EN 771-2		248x240x238	12 / 20	1,4	C6	
Hollow lightweight concrete brick EN 771-3		495x240X238	2/6	0,8	C7	
Hollow normal weight concrete brick EN 771-3		500x200x200	4 / 10	1,0	C8	

Hilti	HIT-HY	170	

Intended Use Brick types and properties. Annex B3

Brick type	Picture	HIT-V ¹⁾	HIT-IC	HIT-V ¹⁾ + HIT-SC	HIT-IC + HIT-SC	Annex
Solid clay brick EN 771-1		M8 to M12	M8 to M12	M8 to M12	M8 to M12	C3
Solid calcium silicate brick EN 771-2		M8 to M12	M8 to M12	M8 to M12	M8 to M12	C4
Hollow clay brick EN 771-1		-	-	M8 to M12	M8 to M12	C5
Hollow calcium silicate brick EN 771-2		-	-	M8 to M12	M8 to M12	C6
Hollow lightweight concrete brick EN 771-3	-	-	-	M8 to M12	M8 to M12	C7
Hollow normal weight concrete brick EN 771-3		-	-	M8 to M12	M8 to M12	C8

Hilti HIT-HY 170 Intended Use

Fastening elements and corresponding brick types.

Annex B4

Z98224,15

Table B5: Installation parameters of threaded rod, HIT-V with sieve sleeve HIT-SC in
hollow brick and solid brick (Figure A1)

Threaded rod, HIT-V			M8	M10	M12
with HIT-SC			16x85	16x85	18x85
Nominal diameter of drill bit	d ₀	[mm]	16	16	18
Drill hole depth	h ₀	[mm]	95	95	95
Effective embedment depth	h _{ef}	[mm]	80	80	80
Maximum diameter of clearance hole in the fixture	dt	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	16	16	18
Maximum torque moment for all brick types except "parpaing creux"	T _{max}	[Nm]	3	4	6
Maximum torque moment for "parpaing creux"	T _{max}	[Nm]	2	2	3
Number of strokes HDM	-	[-]	6	6	8
Number of strokes HDE-500	-	[-]	5	5	6

Table B6: Installation parameters of internally threaded sleeve HIT-IC with HIT-SC in hollow brick and solid brick (Figure A1)

HIT-IC	20	STORE OF STORE	M8x80	M10x80	M12x80
with HIT-SC			16x85	18x85	22x85
Nominal diameter of drill bit	d _o	[mm]	16	18	22
Drill hole depth	ho	[mm]	95	95	95
Effective embedment depth	h _{ef}	[mm]	80	80	80
Thread engagement length	hs	[mm]	875	1075	1275
Maximum diameter of clearance hole in the fixture	dı	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	16	18	22
Maximum torque moment	T _{max}	[Nm]	3	4	6
Number of strokes HDM	-	[-]	6	8	10
Number of strokes HDE-500	•	[-]	5	6	8

Hilti HIT-HY 170	
Intended Use	 - A
Installation parameters.	

Annex B6

Threaded rod, HIT-V	E eeen		M8	M10	M12
Nominal diameter of drill bit	d ₀	[mm]	10	12	14
Drill hole depth = Effective embedment depth	h ₀ = h _{ef}	[mm]	80	80	80
Maximum diameter of clearance hole in the fixture	dı	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	10	12	14
Maximum torque moment	T _{max}	[Nm]	5	8	10

Table B8: Installation parameters of internally threaded sleeve HIT-IC in solid brick (Figure A3)

HIT-IC		00000	M8x80	M10x80	M12x80
Nominal diameter of drill bit	d ₀	[mm]	14	16	18
Drill hole depth = Effective embedment depth	h ₀ = h _{ef}	[mm]	80	80	80
Thread engagement length	h _s	[mm]	875	1075	1275
Maximum diameter of clearance hole in the fixture	di	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	14	16	18
Maximum torque moment	T _{max}	[Nm]	5	8	10

Hilti HIT-HY 170

Intended Use Installation parameters. Annex B7

Temperature in the base material T	Maximum working time t _{work}	Minimum curing tim	
5 °C to 10 °C	8 min	2,5 h	
> 10 °C to 20 °C	5 min	1,5 h	
> 20 °C to 30 °C	3 min	45 min	
> 30 °C to 40 °C	2 min	30 min	

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B10: Maximum working time and minimum curing time for hollow bricks ¹⁾

Temperature in the ba material T	ase Maximum working time t _{work}	Minimum curing time t _{cure}
-5 °C to 0 °C	10 min	12 h
> 0 °C to 5 °C	10 min	5 h
> 5 °C to 10 °C	8 min	2,5 h
> 10 °C to 20 °C	5 min	1,5 h
> 20 °C to 30 °C	3 min	45 min
> 30 °C to 40 °C	2 min	30 min

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B11: Cleaning tools

Manual Cleaning (MC): Hilti hand pump for blowing out drill holes	
Compressed air cleaning (CAC) ¹⁾ : air nozzle with an orifice opening of minimum 3,5 mm in diameter for blowing out drill hole	- Ph
Steel brush HIT-RB: according to tables B5 to B8 depending on borehole diameter for MC and CAC	
¹⁾ Compressed Air Cleaning (CAC) is also allowed.	
N HIT-HY 170	
ended Use kimum working time and minimum curing time. aning tools.	Annex B8

Installation		
Hole drilling	If no significant resistance is felt over the entire depth of the (e.g. in unfilled butt joints), the anchor should not be set at t	
Drilling mode		
	In hollow bricks (use category c): rotary mode Drill hole to the required embedment depth with a hammer of mode using an appropriately sized carbide drill bit.	drill set in rotary
C.000000-	In solid bricks (use category b): hammer mode Drill hole to the required embedment depth with a hammer of mode using an appropriately sized carbide drill bit.	drill set in hammer
Drill hole cleaning	Just before setting the anchor, the drill hole must be free of Inadequate hole cleaning = poor load values.	dust and debris.
Manual Cleaning (MC) for holl	ow and solid bricks	
	Blow out at least 2 times from the back of the drill hole with pump until return air stream is free of noticeable dust.	the Hilti hand
	Brush 2 times with the specified steel brush (tables B5 to B steel brush Hilti HIT-RB to the back of the hole in a twisting removing it. The brush must produce natural resistance as it enters the (brush $\emptyset \ge drill hole \emptyset$) - if not the brush is too small and must the proper brush diameter.	motion and drill hole
	Blow out again with the Hilti hand pump at least 2 times un free of noticeable dust.	il return air stream i
lilti HIT-HY 170		

Injection preparation in masor	nry with holes or voids: installation with sieve sleeve H	IIT-SC
	Sieve sieeve HIT-SC Close lid.	
	Insert sieve sleeve manually.	
For all applications		
	Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pa Do not modify the mixing nozzle. Observe the instruction for use of the dispenser and foil p Check foil pack holder for proper function. Do not use dat foil packs / holders. Insert foil pack into foil pack holder at HIT-dispenser.	back. maged
Inject adhesive without formin	g air voids	
Installation with sieve sieeve h	IIT-SC	
	Sieve sleeve HIT-SC Insert mixer approximately 1 cm through the lid. Inject red adhesive (see tables B5 and B6). Adhesive must emerge	
	Control amount of injected mortar. Adhesive has to protru After injection is completed, depressurize the dispenser b trigger. This will prevent further adhesive discharge from	by pressing the release
Hilti HIT-HY 170 Intended Use Installation instructions.		Annex B10

Solid bricks: installation witho	out sieve sieeve	
	Fill holes approximately 2/3 full to ensure that the annular gap between anchor and the base material is completely filled with adhesive along the embedment length. After injection is completed, depressurize the dispenser by pressing the trigger. This will prevent further adhesive discharge from the mixer. Before use verify that the element is dry and free of oil and other conta HIT-V or HIT-IC in hollow and solid bricks: Pre-setting (Figure A1 to Figure A3) Mark and set element to the required embedment depth until working the has elapsed. The working time t _{work} is given in Table B9 and Table B10	r gap between the hesive along the by pressing the release
Setting the element:	and a second	
	HIT-V or HIT-IC in hollow and solid bricks: Pre-setting (Figure A1 to Figure A3) Mark and set element to the required embedment depth	until working time t _{wark}
Loading the anchor		
	loaded. The applied installation torque shall not exceed the value	
Hilti HIT-HY 170		
Intended Use Installation instructions.		Annex B11

Deutsches Institut DIBt für Bautechnik

Use categories		w/w and w/d		d/d	
Temperature range		Ta ¹⁾	Tb ¹⁾	Ta ¹⁾	Tb ¹⁾
Base material	Elements				
Solid clay brick EN 771-2	HIT-V ²⁾ or HIT-IC HIT-V ²⁾ + HIT-SC	0,97	0,83	0,97	0,83
	HIT-V ²⁾ or HIT-IC	0,96	0,84	0,97	0,84
Solid calcium silicate brick EN 771-2	HIT-V ²⁾ + HIT-SC	0,69	0,62	0,91	0,82
Hollow clay brick EN 771-1	HIT-V ²⁾ + HIT-SC	0,97	0,83	0,97	0,83
Hollow calcium silicate brick EN 771-2	HIT-V ²⁾ + HIT-SC	0,69	0,62	0,91	0,82
Hollow light weight concrete brick EN 771-3		0,89	0,81	0,97	0,86
Hollow normal weight concrete brick EN 771-3	HIT-V ² + HIT-SC	0,97	0,80	0,97	0,80

¹⁾ Temperature range Ta / Tb see Annex B1. ²⁾ Commercial standard threaded rods can also be used.

Hilti HIT-HY 170

Performances

 β -factors for job-site testing under tension load.

Table C2: Characteristic values of steel resistance for threaded rod, HIT-V-... under tension and shear loads in masonry

HIT-HY 170 with threaded rod, HIT-V	•		M8	M10	M12
Steel failure tension loads					
Characteristic steel resistance	N _{Rk,s}	[kN]		$A_s \cdot f_{uk}$	
Steel failure shear loads without lever	arm				
Characteristic steel resistance	V _{Rk,s}	[kN]		0,5 · A _s · f _{uk}	
Steel failure shear loads with lever arm)				
Characteristic bending moment	M _{Rk,s}	[kN]		1,2 · W _{el} · f _{uk}	

Table C3: Characteristic values of steel resistance for internally threaded sleeve HIT-IC under tension and shear loads in masonry

HIT-HY 170 with HIT-IC			M8	M10	M12
Steel failure tension loads					
Characteristic steel resistance	N _{Rk.s}	[kN]	5,9	7,3	13,8
Partial safety factor	γ _{Ms,N}	[-]		1,50	
Steel failure shear loads without lever arm					
Characteristic steel resistance	V _{Rk,s}	[kN]		0,5 · A _s · f _{uk}	
Steel failure shear loads with lever arm					
Characteristic bending moment	M _{Rk,s}	[Nm]		1,2 · W _{el} · f _{uk}	

Hilti HIT-HY 170	
Performances	1001
Characteristic resistances under tension and shear load – steel failure.	

Brick type: Solid clay brick Mz, 2DF

Table C4: Description of brick

Brick type		[-]	Solid Mz, 2DF	
Bulk density	ρ	[kg/dm ³]	≥ 2,0	The state of the second
Compressive strength	f _b	[N/mm ²]	≥ 12	-12
Code		[-]	EN 771 - 1	
Producer		[-]		
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	1

Table C5: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	c _{min} = c _{cr} [mm]	115	
Spacing	$S_{min I } = S_{cr I } [mm]$	240	
Spacing –	$s_{min} \perp = s_{cr} \perp [mm]$	115	

Table C6: Group factor for group fastenings

Group factor		2 at c _{cr} and s _{cr}	11000
Circup racion	$\alpha_{q,N I} \alpha_{q,V I} \alpha_{q,N} \perp \alpha_{q,V} \perp [-]$	z al cor and sor	

Table C7: Characteristic tension resistance at edge distance $c \ge c_{cr}$

Use category					= w/d	d/	'd
Service temperatu	ire range			(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and siz	ze	h _{ef} [mm]	f _b [N/mm²]		N _{Rk}	[kN]	
HIT-V ¹⁾	M8, M10, M12	80	12	3,0	2,5	3,0	2,5
HIT-IC	M8	80	10	3,0	2,5	3,0	2,5
THE REAL PROPERTY AND INCOMENTS	M10, M12		12	4,0	3,5	4,0	3,5
HIT-V ¹⁾ + HIT-SC	M8, M10, M12	80	12	4,0	3,5	4,0	3,5
	M8, M10, M12	80	12	4,0	3,5	4,0	3,5

¹⁾ Commercial standard threaded rods can also be used.

Table C8: Characteristic shear resistance at edge distance $c \ge c_{cr}$

Use category					w/w = w/d		d/d	
Service temper	rature range	(Ta)	(Tb)	(Ta)	(Tb)			
Anchor type and	d size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk}		[kN]		
All anchors	M8. M10, M12	80	12	3,5				

Table C9: Displacements

h _{ef} [mm]	N [kN]	δ _№ [mm]	δ _{N∞} [mm]	V [kN]	δ _{v0} [mm]	δ _{v∞} [mm]
80	0,9	0,2	0,4	1,0	1,0	1,5

Hilti HIT-HY 170

Performances solid clay brick Mz, 2DF

Installation parameters and group factor.

Characteristic values of resistance under tension and shear loads. Displacements.

Deutsches Institut für Bautechnik

Brick type: Solid calcium silicate brick KS, 2DF

Table C10: Description of brick

Brick type		[-]	Solid KS, 2DF
Bulk density	ρ	[kg/dm³]	≥ 2,0
Compressive strength	f _b	[N/mm ²]	≥ 12 or ≥ 28
Code		[-]	EN 771 - 2
Producer		[-]	
Brick dimensions		[mm]	≥ 240 x 115 x 113
Minimum wall thickness	h _{min}	[mm]	≥ 115

Table C11: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	$c_{min} = c_{cr} [mm]$	115	
Specing	S _{min II} = S _{cr II} [mm]	240	
Spacing —	$s_{min} \perp = s_{cr} \perp [mm]$	115	

Table C12: Group factor for group fastenings

Group factor	$\alpha_{g,N II} \alpha_{g,V II} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	2 at c _{cr} and s _{cr}

Table C13: Characteristic tension resistance at edge distance $c \ge c_{cr}$

Use category	w/w = w/d		d/d					
Service temperatu	ure range			(Ta)	(Tb)	(Ta)	(Tb)	
Anchor type and si	ze	h _{ef} [mm]	f _b [N/mm²]		N _{Rk} [kN]			
HIT-V ¹⁾ HIT-IC M8, M10, M12	00	12	5,5	5,0	6,0	5,0		
	110, 1110, 1112	80	28	8,5	7,5	8,5	7,5	
HIT-V ¹⁾ + HIT-SC		80	12	4,0	3,5	5,5	5,0	
			28	6,0	5,5	8,0	7,5	

¹⁾ Commercial standard threaded rods can also be used.

Table C14: Characteristic shear resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range					w/w = w/d		d/d	
					(Tb)	(Ta)	(Tb)	
Anchor type and	d size	h _{ef} [mm]	f _b [N/mm ²]	V _{Rk} [[kN]		
All anabara		80	12	4,0				
All anchors	Manchors M8, M10, M12		28	6,0				

Table C15: Displacements

h _{ef} [mm]	N [kN]	δ _{N0} [mm]	δ _№ [mm]	V [kN]	δ _{v0} [mm]	δ _{v∞} [mm]
80mm	2,3	0,2	0,4	1,5	1,2	1,8

Hilti HIT-HY 170	
Performances solid silica brick KS, 2DF	Annex C4
Installation parameters and group factor.	

Characteristic values of resistance under tension and shear loads. Displacements.

Brick type: Hollow clay brick Hlz, 10DF

Table C16: Description of brick

Brick type		[-]	Hiz 12-1,4-10 DF	- Alestron
Bulk density	ρ	[kg/dm ³]	≥ 1,4	
Compressive strength	fb	[N/mm ²]	≥ 12 or ≥ 20	
Code		[-]	EN 771 - 1	
Producer		[-]	Rapis (D)	
Brick dimensions		[mm]	300 x 240 x 238	Drawing of the brick
Minimum wall thickness	h _{min}	[mm]	≥ 240	see Table B4

Table C17: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	$c_{min} = c_{cr} [mm]$	150	
	$s_{min \parallel} = s_{cr \parallel} [mm]$	300	
Spacing	$S_{min} \perp = S_{cr} \perp [mm]$	240	

Table C18: Group factor for group fastenings

Group factor $\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	2 at c _{cr} and s _{cr}
--	--

Table C19: Characteristic tension resistance at edge distance $c \ge c_{cr}$

Use category			w/w :	= w/d	d/	d
Service temperature range				(Tb)	(Ta)	(ТЬ)
Anchor type and size h _{ef} [mi		m] f _b [N/mm²]	N _{Rk} [kN]			
	80	12	3,0	2,5	3,0	2,5
HIT-IC + HIT-SC	80	20	3,5	3,0	3,5	3,0

¹⁾ Commercial standard threaded rods can also be used.

Table C20: Characteristic shear resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range				w/w = w/d		/d
				(Tb)	(Ta)	(Tb)
Anchor type and size her		f _b [N/mm²]	V _{Rk} [kN]			
	00	12	2,0			
HIT-IC + HIT-SC	80	20		3	,0	

"Commercial standard threaded rods can also be used.

Table C21: Displacements

h _{ef} [mm]	N [kN]	δ _{N0} [mm]	δ _№ [mm]	V [kN]	δ _{v0} [mm]	δ _{V∞} [mm]
80	0,9	0,2	0,3	0,9	1,0	1,5

Hilti HIT-HY 170

Performances hollow clay brick Hiz, 10DF Installation parameters and group factor.

Characteristic values of resistance under tension and shear loads. Displacements.

Deutsches Institut für Bautechnik

Brick type: Hollow calcium silicate brick KSL, 8DF

Table C22: Description of brick

Brick type		[-]	KSL-12-1,4-8 DF	
Bulk density	ρ	[kg/dm ³]	≥ 1,4	
Compressive strength	f _b	[N/mm²]	≥ 12 or ≥ 20	
Code		[-]	EN 771 – 2	
Producer		[-]	KS Südbayern (D)	
Brick dimensions		[mm]	248 x 240 x 238	Drawing of the brick see Table B4
Minimum wall thickness	h _{min}	[mm]	≥ 240	See Table B4

Table C23: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	c _{min} = c _{cr} [mm]	125	
Spacing —	s _{min II} = s _{cr II} [mm]	248	
	$s_{\min \perp} = s_{cr} \perp [mm]$	240	

Table C24: Group factor for group fastenings

Group factor $\alpha_{g,N \parallel} \alpha_{g,N \perp} \alpha_{g,N \perp} - 2$ at c_{cr} and s_{cr}	Group factor	$ad_{10} = ad_{10} = ad_{$	
--	--------------	--	--

Table C25: Characteristic tension resistance at edge distance $c \ge c_{cr}$

Use category			w/w = w/d		d/d	
Service temperature range				(Tb)	(Ta)	(Tb)
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	N	N _{Rk}	_{ik} [kN]	
	90	12	3,0	2,5	3,5	3,0
HIT-IC + HIT-SC M8, M10, M12	80	20	4,0	3,5	5,0	4,5

¹⁾ Commercial standard threaded rods can also be used.

Table C26: Characteristic shear resistance at edge distance $c \ge c_{cr}$

Use category				= w/d	d	/d
Service temperature range				(Tb)	(Ta)	(Tb)
Anchor type and size h,		f _b [N/mm²]	V _{Rk} [kN]			
HIT-V ¹⁾ + HIT-SC	00	12		8	,5	
HIT-IC + HIT-SC	80	20		12	2,0	

¹⁾ Commercial standard threaded rods can also be used.

Table C27: Displacements

h _{et} [mm]	N [kN]	δ _{N0} [mm]	δ _№ [mm]	V [kN]	δ _{v0} [mm]	δ _{V∞} [mm]
80	1,8	0,2	0,3	3,4	2,5	3,8

Hilti HIT-HY 170 Annex C6 Performances hollow silica brick KSL, 8DF Annex C6 Installation parameters and group factor. Disclosure factor.

Characteristic values of resistance under tension and shear loads. Displacements.

Z98224.15

Deutsches Institut für Bautechnik

Brick type: Hollow lightweight concrete brick Hbl, 16DF

Table C28: Description of brick

Brick type		[-]	Hbl-4-0,7	
Bulk density	ρ	[kg/dm³]	≥ 0,8	
Compressive strength	f _b	[N/mm²]	≥ 2 or ≥ 6	
Code		[-]	EN 771-3	
Producer		[-]	Knobel (D)	
Brick dimensions		[mm]	495 x 240 x 238	Drawing of the brick
Minimum wall thickness	h _{min}	[mm]	≥ 240	see Table B4

Table C29: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	$c_{min} = c_{cr} [mm]$	250	
Spacing —	s _{min II} = s _{cr II} [mm]	240	
	$s_{min} \perp = s_{cr} \perp [mm]$	240	

Table C30: Group factor for group fastenings

Group factor	$\alpha_{\alpha,N I} \alpha_{\alpha,V I} \alpha_{\alpha,N} \perp \alpha_{\alpha,V} \perp [-]$	2 at c _{cr} and s _{cr}

Table C31: Characteristic tension resistance at edge distance $c \ge c_{cr}$

Use category				= w/d	d	/d
Service temperature range				(Tb)	(Ta)	(Tb)
Anchor type and size h _{ef} [mm] f _b [N/mm ²]		f _b [N/mm²]		N _{Rk}	[kN]	
	00	2	1,2	0,9	1,5	1,2
HIT-IC + HIT-SC M8, M10, M12	80 -	6	2,0	1,5	2,5	2,0

¹⁾ Commercial standard threaded rods can also be used.

Table C32: Characteristic shear resistance at edge distance $c \ge c_{cr}$

Use category				w/w = w/d d/d		/d
Service temperature range				(Tb)	(Ta)	(Tb)
chor type and size h _{ef} [mm] f _b [N/mm ²]			V _{Rk}	[kN]		
	00	2		2	,5	
HIT-IC + HIT-SC M8, M10, M12	80	6		4	,0	

¹⁾ Commercial standard threaded rods can also be used.

Table C33: Displacements

h _{ef} [mm]	N [kN]	δ _{N0} [mm]	δ _{№∞} [mm]	V [kN]	δ _{v0} [mm]	δ _{V∞} [mm]
80	2,4	0,2	0,4	3,4	1,3	1,9

Hilti HIT-HY 170	
Performances hollow lightweight concrete brick Hbl 16DF	Annex C7
Installation parameters and group factor.	
Characteristic values of resistance under tension and shear loads. Displacements.	

Deutsches Institut für Bautechnik

Brick type: Hollow normal weight concrete brick - parpaing creux

Table C34: Description of brick

Brick type		[-]	B40	
Bulk density	ρ	[kg/dm ³]	≥ 1,0	
Compressive strength	f _b	[N/mm ²]	≥ 4 or ≥ 10	
Code		[-]	EN 771-3	
Producer		[-]	Fabemi (F)	
Brick dimensions		[mm]	500 x 200 x 200	Drawing of the brick
Minimum wall thickness	h _{min}	[mm]	≥ 200	see Table B4

Table C35: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	c _{min} = c _{cr} [mm]	200	
Spacing	s _{min II} = s _{cr II} [mm]	200	
	$S_{min} \perp = S_{cr} \perp [mm]$	200	

Table C36: Group factor for group fastenings

Group factor	$\alpha_{g,N,II} \alpha_{g,V,II} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 at c _{cr} and s _{cr}

Table C37: Characteristic tension resistance at edge distance $c \ge c_{cr}$

Use category				w/w = w/d		d/d	
Service temperature range			(Ta)	(Tb)	(Ta)	(Tb)	
Anchor type and size h _{ef} [mm]		f _b [N/mm²]	N _{Rk} [kN]				
			4	0,9	0,9	0,9	0,9
	M8, M10, M12	80	10	1,2	1,2	1,5	1,5

¹⁾ Commercial standard threaded rods can also be used.

Table C38: Characteristic shear resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range				w/w = w/d		d/d	
				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and size		h _{ef} [mm]	f _b [N/mm²]	V _{Rk} [kN]			
		80	4	2,5			
HIT-IC + HIT-SC	M8, M10, M12	80	10	4,0			

¹⁾ Commercial standard threaded rods can also be used.

Table C39: Displacements

h _{et} [mm]	N [kN]	δ _{N0} [mm]	δ _№ [mm]	V [kN]	δ _{vo} [mm]	δ _{V∞} [mm]
80	1,0	0,6	1,2	2,3	0,6	0,9

Hilti HIT-HY 170	
Performances hollow normal weight concrete brick - parpaing creux	Annex C8
Installation parameters and group factor. Characteristic values of resistance under tension and shear loads. Displacements.	