

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/1038 of 29 January 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti screw anchor HUS3

Concrete screw for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

24 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 3: "Undercut anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 and European Assessment Document (EAD) 330011-00-0601 "Assessment of adjustable concrete screws", July 2014.

ETA-13/1038 issued on 27 August 2015

European Technical Assessment ETA-13/1038

Page 2 of 24 | 29 January 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z100268.15 8.06.01-478/15

European Technical Assessment ETA-13/1038

Page 3 of 24 | 29 January 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS3 is an anchor made of galvanised steel (HUS3-H, HUS3-HF, HUS3-C, HUS3-P, HUS3-PS, HUS3-A, HUS3-I, HUS3-I Flex) of sizes 6, 8, 10 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Wesentliches Merkmal	Leistung
Characteristic resistance under static and quasi-static loading	See Annex C1 – C3
Characteristic resistance under seismic loading Category C1	See Annex C4
Displacements for tension and shear loads	See Annex C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C5 – C7

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, and European Assessment Document EAD 330011-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z100268.15 8.06.01-478/15

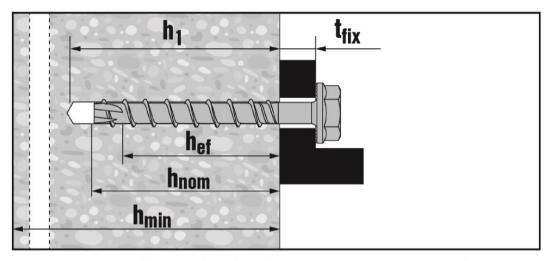
European Technical Assessment ETA-13/1038

Page 4 of 24 | 29 January 2016

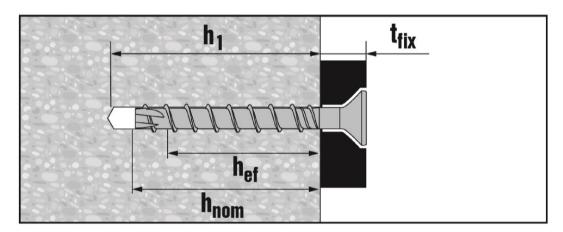
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

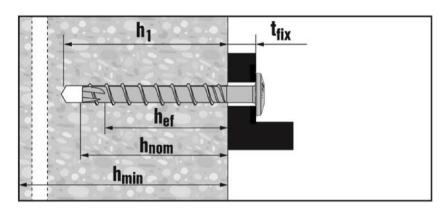

Issued in Berlin on 29 January 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentLange

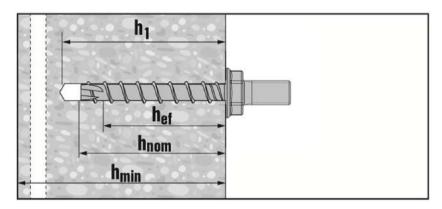

Z100268.15 8.06.01-478/15

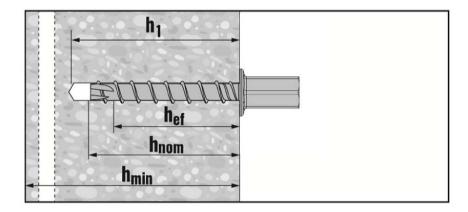
Product and installed condition without adjustment

HUS3-H (hexagon head configuration sizes 6, 8, 10 and 14)
HUS3-HF (hexagon head configuration sizes 8, 10 and 14)



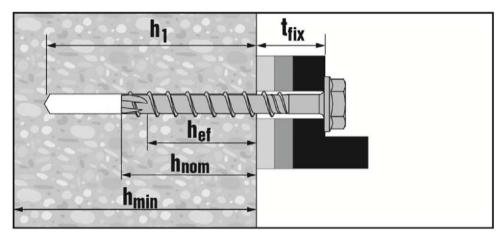
HUS3-C (countersunk head configuration sizes 6, 8 and 10)


Hilti Screw anchor HUS3	
Product description Installed condition without adjustment	Annex A1

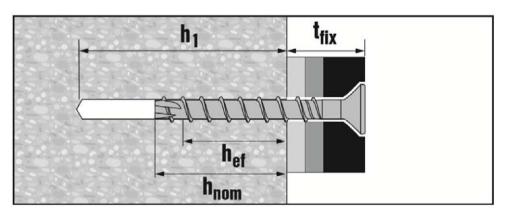

Product and installed condition without adjustment

HUS3-P/PS (pan head configuration size 6)

HUS3-A (size 6 with external thread configuration M8 or M10)



HUS3-I (size 6 with internal thread configuration M8/M10)


Hilti Screw anchor HUS3	
Product description Installed condition without adjustment	Annex A2

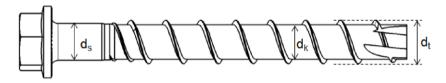
Product and installed condition with adjustment

HUS3-H (hexagon head configuration sizes 8, $10 - h_{nom2}$, h_{nom3}) HUS3-HF (hexagon head configuration sizes 8 and $10 - h_{nom2}$, h_{nom3})

HUS3-C (countersunk head configuration sizes 8 and 10 - h_{nom2}, h_{nom3})

Hilti Screw anchor HUS3	
Product description Installed condition with adjustment	Annex A3

Table A1: Material and screw types


Part	Designation / Material									
1, 2,	Screw anchor / Carbon steel									
3, 4, 5, 6,	Anchor size HUS3		6	6 8 10						
7.	Characteristic yield strength	f _{yk} [N/mm	²] 745	695	690	630				
	Characteristic ultimate strength	f _{uk} [N/mm	930	810	805	730				
	Elongation at rupture	A ₅ [%]		<u> </u>	8					
Wash			configuration 2) Hilti HUS	3-H, sizes 6, 8, n, galvanized 3-HF, sizes 8,1	0 and 14, hexa					
7,	2 0		configuratio	n, multilayer co	ating					
1825/1			3) Hilti HUS configuratio	3) Hilti HUS3-C, sizes 6, 8 and 10, countersunk head configuration, galvanized						
				4) Hilti HUS3-A, size 6, external thread M8/16 and M10/21, galvanized						
2.P			5) Hilti HUS galvanized	5) Hilti HUS3-P, size 6, pan head configuration, galvanized						
6) Hilti HUS3-PS, size6, pan head (small) configuration galvanized										
			7) Hilti HUS galvanized	7) Hilti HUS3-I, size 6, internal thread M8 and M10, galvanized						
			thread - M8/16 pre	3-I Flex, size 6, assembled with eassembled wit	coupler M6 or	M8,				

Hilti Screw anchor HUS3 Production description Material and screw types Annex A4

Table A2: Specification and marking

Anchor size HUS3			6		8		10			14			
Туре			H, C, A, P, PS, I, I-Flex	H HF (HF	н					
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth		[mm]	55	50	60	70	55	75	85	65	85	115	
Threaded outer diameter	d _t	[mm]	7,85	10,30			12,40			16,85			
Core diameter	d _k	[mm]	5,85		7,85			9,90			12,95		
Shaft diameter	ds	[mm]	6,15	8,45			8,45 10,55			13,80			
Stressed section	As	[mm²]	26,9		48,4 77,0			131,7					

 $\textbf{HUS3}: \textbf{Hilti Universal Screw 3}^{\text{rd}} \ \textbf{generation}$

H: Hexagonal head

10: screw diameter

45/25/15: maximum thickness fixture $t_{fix1}/t_{fix2}/t_{fix3}$ related to the

embedment depth $h_{nom1}/h_{nom2}/h_{nom3}$ (see Annex B3)

Hilti Screw anchor HUS3	
Production description Material and screw types	Annex A5

Intended use

Anchorages subject to:

Static and quasi-static loads:

All sizes and all embedment depths.

Seismic action for Performance Category C1:

HUS3-H sizes 8, 10 and 14, standard and maximum embedment depth (h_{nom2} and h_{nom3}).

HUS3-C and HUS3-HF sizes 8 and 10, standard and maximum embedment depth (h_{nom2} and h_{nom3}).

Fire exposure:

All sizes and all embedment depths.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000,
- Strength classes C20/25 to C50/60 according to EN 206-1:2000,
- Non-cracked or cracked concrete: all sizes and all embedment depths.

Use conditions (Environmental conditions)

Anchorages subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions and under fire exposure are designed for design method A in accordance with:
 - Either ETAG 001, Annex C, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004
 - Or CEN/TS 1992-4:2009
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.
- In case of requirements for resistance to fire exposure it must be ensured that local spalling of the concrete cover does not occur.

Installation:

- Hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- · After installation further turning of the anchor must not be possible.
- The head of the anchor must be supported on the fixture and is not damaged.
- · Adjustability according to Annex B7 for:

HUS3-H, HUS3-HF and HUS3-C size 8 (h_{nom2} = 60 mm and h_{nom3} =70mm)

HUS3-H, HUS3-HF and HUS3-C size 10 (h_{nom2} = 75 mm and h_{nom3} =85mm)

Hilti Screw anchor HUS3	
Intended Use	Annex B1
Specifications	

Table B1: Installation parameters HUS3-6

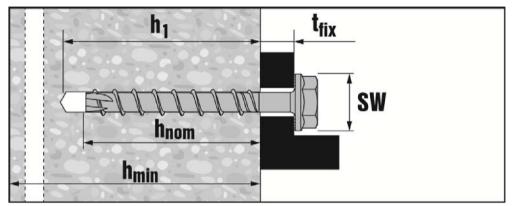
Anchor size H	US3	6						
Туре				н	С	А	P- PS	l I-Flex
Nominal embed	dmenth depth		[mm]			55		
Nominal drill ho	ole diameter	do	[mm]			6		
Cutting diamete	er of drill bit	d _{cut} ≤	[mm]			6,40		
Clearance hole	diameter	d _f ≤	[mm]			9		
Wrench size (H	, A, I -type)	SW	[mm]	13	-	13	-	13
Countersunk he	ead diameter	d _h	[mm]	-	11,5			-
Torx size (C, P,	PS –type)	TX	-	-	30	-	30	-
Depth of drill he wall position	ole in floor/	h ₁ ≥	[mm]			65		
Depth of drill he position	h ₁ ≥	[mm]	58					
Installation Tor	T _{inst}	[Nm]	25					
Setting tool ¹⁾	Strength class		25 and 0/25			i SIW 14 i SIW 22		

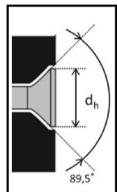
Table B2: Installation parameters HUS3-8, 10 and 14

Anchor size HUS3					8	10				14		
Туре					H, HF, C			H, HF, C			H, HF	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embed	lmenth depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Nominal drill ho	ole diameter	d _o	[mm]		8			10			14	
Cutting diamete	er of drill bit	d _{cut} ≤	[mm]		8,45			10,45			14,50	
Clearance hole	diameter	d _f ≤	[mm]		12			14		18		
Wrench size (H,	HF-type)	SW	[mm]		13			15		21		
Diameter of cou	ıntersunk head	d _h	[mm]		18			21		-		
Torx size (C-type	e)	TX	-		45		50 -					
Depth of drill ho	ole	h₁≥	[mm]	60	70	80	65	85	95	75	95	125
Depth of drill ho adjustability set	•	h ₁ ≥	[mm]	-	80	90	- 95 105			-		
Setting tool ¹⁾	Strength class		0/25	Hilti SIW 22 T-A					i SIW 22	T-A		

¹⁾ Installation with other impact screw driver of equivalente power is possible

Hilti Screw anchor HUS3	
Intended Use	Annex B2
Installation parameter	




Table B3: Minimum thickness of concrete member, minimum edge distance and spacing HUS3-6

Anchor size H	US3	6		
Nominal embedmenth depth		h _{nom}	[mm]	55
Minumum thickness of concrete member		h _{min}	[mm]	100
Cracked and non-cracked	Cracked and Spacing		[mm]	35
concrete	Minimum edge distance	C _{min}	[mm]	35

Table B4: Minimum thickness of concrete member, minimum edge distance and spacing HUS3-8, 10 und 14

Anchor size HUS3					8		10			14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embed	Nominal embedmenth depth		[mm]	50	60	70	55	75	85	65	85	115
Minumum thick member	ness of concrete	h _{min}	[mm]	100	100	120	100	130	140	120	160	200
Cracked and	Minimum spacing	S _{min}	[mm]	40	50	50	50	50	60	60	75	75
non-cracked concrete	Minimum edge distance	C _{min}	[mm]	50	50	50	50	50	60	60	75	75

Hilti Screw anchor HUS3	
Intended Use Installation parameter	Annex B3

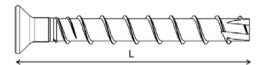


Table B5: Screw length and maximum thickness of fixture for HUS3-6

Anchor size	6								
	н	С	Α	1	P	PS			
				I-Flex					
embedment depth [mm]				55					
		Thic	kness of	fixture [r	mm]				
Length of screw [mm]									
55			0	0					
60	5	5			5	5			
70		15							
80	25				25				
100	45								
120	65								

Table B6: Screw length and maximum thickness of fixture for HUS3-C 8 and 10

Anchor size		8			10	
Nominal embedment depth	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
[mm]	50	60 Thic	70 kness of	55 fixture [75 mm]	85
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}
65	15	5	-	-	-	-
70	-	-	-	15	-	-
75	25	15	-	-	-	-
85	35	25	15	-	-	-
90	-	-	-	35	15	-
100	1	-	-	45	25	15

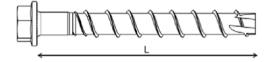
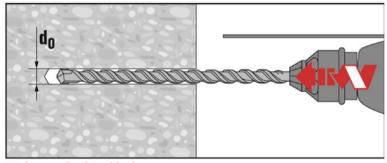
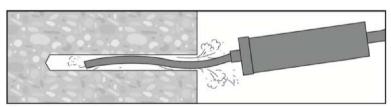
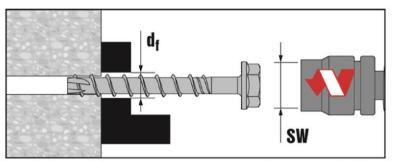

Hilti Screw anchor HUS3	
Intended Use Installation parameters	Annex B4
mistaliation parameters	

Table B7: Screw length and maximum thickness of fixture for HUS3-H and HUS3-HF¹⁾

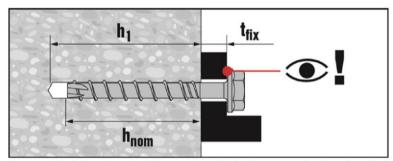
Anchor size		8			10			14	
Nominal embedment depth	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
	50	60	70	55	75	85	65	85	115
[mm]		Thickness of fixture [mm]							
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}
55	5	-	-	-	-	1	-	-	-
60	-	-	-	5	-	-	-	-	-
65	15	5	-	-	-	-	-	-	-
70	-	-	-	15	-	-	-	-	-
75	25	15	5	-	-	-	10	-	-
80	-	-	-	25	5	-	-	-	-
85	35	25	15	-	-	-	-	-	-
90	-	-	-	35	15	5	-	-	-
100	50	40	30	45	25	15	35	15	-
110	-	-	-	55	35	25	-	-	-
120	70	60	50	-	-	-	-	-	-
130	-	-	-	75	55	45	65	45	15
150	100	90	80	95	75	65	85	65	35


¹⁾ HUS3-HF available for size 14 with h₁ and h₂ only


Hilti Screw anchor HUS3	
Intended Use Installation parameters	Annex B5

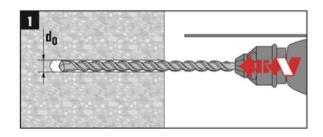

Installation instruction without adjustment

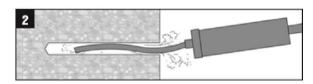
Make a cylindrical hole

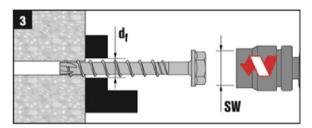


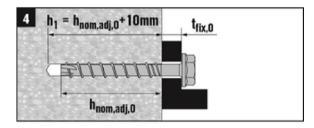
Clean the borehole

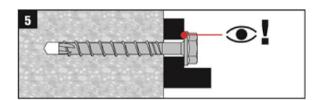
Install the screw anchor by impact screw driver (sizes 6, 8, 10 and 14) or by torque wrench (size 6)

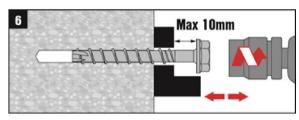


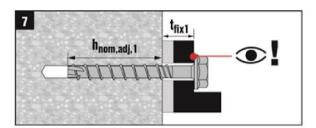

Ensure that the head of the anchor is fully supported on the fixture and it is not damaged.

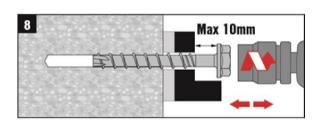

Hilti Screw anchor HUS3	
Intended Use Installation Instruction without adjustment	Annex B6

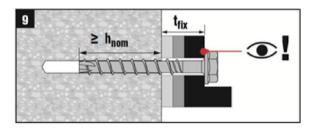



Installation instruction with adjustment









The anchor can be adjusted maximum two times.

The total allowed thickness of shims added during the adjustment process is 10mm.

The final embedment depth after adjustment process must be larger or equal than h_{nom2} or h_{nom3}.

Hilti Screw anchor HUS3

Intended Use

Installation instruction with adjustment

Annex B7

Product performance for static and quasi-static action HUS3-6 Table C1:

Anchor si Type	Anchor size HUS3					6 H C A I P						
Nominal e	mbedment depth	h _{nom}	[mm]			55						
Steel failu	re for tension and sh	ear load										
Characteri	stic resistance	$N_{Rk,s}$	[kN]	24	22	24		21				
Partial safe	ety factor	γms,n	[-]			1,4						
Characteri	stic resistance	$V_{Rk,s}$	[kN]			12,5						
Partial safe	ety factor	γ _{Ms,V}	[-]			1,5						
k₂ factor		k ₂ 1)	[-]			0,8						
Characteri	stic resistance	$M^{\scriptscriptstyle{0}}_{\scriptscriptstyle{Rk,s}}$	[Nm]			21						
Pull-out fa	ilure											
non-cracke	stic resistance in ed concrete C20/25	$N_{Rk,p}$	[kN]		!	9	7	7,5				
	stic resistance in ncrete C20/25	N _{Rk,p}	[kN]	6								
Increasing	C30/37					1,22						
factor	C40/50	Ψ_{c}	[-]	1,41								
concrete	C50/60											
Concrete o	one and splitting fai	lure										
Effective e	mbedment depth	h _{ef}	[mm]			42						
Factor for	Cracked	k _{cr} ¹⁾	[-]			7,2						
	Non-cracked	k _{ucr} ¹⁾	[-]			10,1						
Concrete cone	Edge distance	C _{cr,N}	[mm]			1,5 h _{ef}						
failure	Spacing	S _{cr,N}	[mm]			3 h _{ef}						
Splitting	Edge distance	C _{cr,sp}	[mm]			63						
failure	Spacing	S _{cr,sp}	[mm]	126								
Installation	n safety factor	$\gamma_2^{(2)} = \gamma_{inst}^{(1)}$	[-]			1,2						
Concrete p	ory-out failure											
k factor		$K^{2)} = k_3^{1}$	[-]			1,5						
Concrete edge failure												
Effective le	ength of anchor	$I_f = h_{ef}$	[-]			42						
Outside dia	ameter of anchor	d _{nom}	[mm]			6						

 $^{^{1)}}$ Parameters relevant only for design according to CEN/TS 1992-4:2009 $^{2)}$ Parameter relevant only for design according to ETAG001 Annex C

Hilti Screw anchor HUS3	
Product Performance For static and quasi-static action	Annex C1

Product performance for static and quasi-static action HUS3-8, 10 and 14 Table C2:

Anchor size HUS3			8		10			14				
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal en	nbedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Adjustment	t											
Total max. t adjustment	thickness of layers	t _{adj}	[mm]	-	10	10	-	10	10	-	-	-
Max. numb	er of adjustments	n _a	[-]	-	2	2	-	2	2	-	-	-
Steel failure	e for tension load											
Characteris ⁻	tic resistance	N _{Rk,s}	[kN]		39,2			62,2			96,6	
Partial safet	ty factor	γms,n	[-]					1,4				
Pull-out fail	lure											
	tic resistance in d concrete C20/25	N _{Rk,p}	[kN]	9	12	16	12	20	1)	1)	1)	1)
	tic resistance in ncrete C20/25	$N_{Rk,p}$	[kN]	6	9	12	1)	1)	1)	1)	1)	1)
Increasing	C30/37			1,22								
factor	C40/50	ψ_{c}	[-]					1,41				
concrete	C50/60							1,55				
Concrete co	one and splitting fai	lure										
Effective en	nbedment depth	h _{ef}	[mm]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Factor for -	Cracked	k _{cr} ²⁾	[-]					7,2				
ractor for -	Non-cracked	k _{ucr} 2)	[-]					10,1				
Concrete	Edge distance	C _{cr,N}	[mm]					1,5 h _{ef}				
cone - failure	Spacing	S _{cr,N}	[mm]					3 h _{ef}				
Splitting	Edge distance	C _{cr,sp}	[mm]	60	70	85	65	90	110	85	100	140
failure	Spacing	S _{cr,sp}	[mm]	120	140	170	130	180	220	170	200	280
Installation	safety factor	$\gamma_2^{(3)} = \gamma_{inst}^{(2)}$	[-]					1,0				

Hilti Screw anchor HUS3	
Product Performance For static and quasi-static action	Annex C2

Pull-out failure is not decisive
 Parameters relevant only for design according to CEN/TS 1992-4:2009
 Parameter relevant only for design according to ETAG001 Annex C

Table C2 continued

Anchor size HUS3				8		10			14		
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Adjustment											
Total max. thickness of adjustment layers	t _{adj}	[mm]	-	10	10	-	10	10	-	-	-
Max. number of adjustments	n _a	[-]	-	2	2	-	2	2	-	-	-
Steel failure for shear load											
Characteristic resistance	$V_{Rk,s}$	[kN]		17			28			45	
Partial safety factor	γ _{Ms,V}	[-]					1,5				
k₂ factor	k ₂ 1}	[-]					0,8				
Characteristic resistance	$M^0_{Rk,s}$	[Nm]		46			92			187	
Concrete pry-out failure											
k factor	$K^{2} = k_3^{1}$	[-]	1,0 2,0 1,0 2,0								
Concrete edge failure											
Effective length of anchor	I _f = h _{ef}	[-]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Outside diameter of anchor	d_{nom}	[mm]		8			10			14	

¹⁾ Parameters relevant only for design according to CEN/TS 1992-4:2009
2) Parameter relevant only for design according to ETAG001 Annex C

Hilti Screw anchor HUS3	
Product Performance For static and quasi-static action	Annex C3

Table C3: Product performance for seismic category C1

Anchor size HUS3				8	3	1	0	1	14	
				h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	
Nominal emb	edment depth	h_{nom}	[mm]	60	70	75	85	85	115	
Steel failure	for tension and sh	near load								
Characteristi	c resistance	$N_{Rk,s,seis}$	[kN]	39	9,2	62	2,2	96	5,6	
Partial safety	factor	γms,n	[-]			1	,4			
Characteristi	c resistance	$V_{Rk,s,seis}$	[kN]	11	.,9	16	5,8	22	2,5	
Partial safety	factor	γ _{Ms,V}	[-]			1	,5			
Pull-out failu	ire									
Characteristic	c resistance in rete	$N_{Rk,p,seis}$	[kN]	9	12	1)	1)	1)	1)	
Concrete con	ne failure									
Effective eml	bedment depth	h _{ef}	[mm]	46,4	54,9	58,6	67,1	66,3	91,8	
Concrete cone	Edge distance	C _{cr,N}	[mm]			1,5	h_{ef}			
failure	Spacing	S _{cr,N}	[mm]			3	h _{ef}			
Installation s	afety factor	γ ₂	[-]			1	,0			
Concrete pr	y-out failure									
k factor k [-]			2,0							
Concrete ed	lge failure									
Effective length of anchor		I _f = h _{ef}	[-]	46,4	54,9	58,6	67,1	66,3	91,8	
Outside diameter of anchor d _{nom} [mm]			[mm]	8 10			1	4		

¹⁾ Pull-out failure is not decisive

Hilti Screw anchor HUS3	
Performances	Annex C4
For seismic category C1	

Table C4: Product performance for resistance to Fire

Anchor HUS3				6 H C A I P PS						
Nominal embed		h_{nom}	[mm]	55						
Steel failure for	or tension ar	d shear	load (F	$_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$						
	R30	F _{Rk,s,fi}	[kN]	1,6						
	R60	F _{Rk,s,fi}	[kN]	1,2						
	R90	$F_{Rk,s,fi}$	[kN]	0,8						
Characteristic	R120	F _{Rk,s,fi}	[kN]	0,7						
resistance	R30	$M^0_{Rk,s,fi}$	[Nm]	1,4						
	R60	$M^0_{Rk,s,fi}$	[Nm]	1,1						
	R90	$M^0_{Rk,s,fi}$	[Nm]	0,7						
	R120	M ⁰ _{Rk,s,fi}	[Nm]	0,6						
Pull-out failur	·e									
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5						
	R120	$N_{Rk,p,fi}$	[kN]	1,2						
Concrete con	e failure									
Characteristic resistance	R30 R60 R90	N ⁰ _{Rk,c,fi}	[kN]	1,8						
	R120	N ⁰ _{Rk,c,fi}	[kN]	1,5						
Edge distance										
R30 to	R120	C _{cr,fi}	[mm]	2 h _{ef}						
In case of fire a	attack from mo	ore than	one side	, the minimum edge distance shall be ≥ 300 mm.						
Anchor spacing	3									
	R30 to R120	S _{cr,fi}	[mm]	2 c _{cr,fi}						
Concrete pry-	out failure									
	R30 to R120	k	[-]	1,5						
The anchorage given value.	depth has to b	e increa	sed for w	vet concrete by at least 30 mm compared to the						

Hilti Screw anchor HUS3	
Performances For resistance to fire	Annex C5

Table C5: Product performance for resistance to Fire

Anchor HUS3-H and HUS3-HF			8				10			14			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embed	lment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115	
Steel failure fo	or tension an	d shear	load (F	_{Rk,s,fi} = N	_{Rk,s,fi} = V	Rk,s,fi							
	R30	F _{Rk,s,fi}	[kN]	3,2	3,5	3,8	6,1	6	,2	10,4	10),6	
	R60	F _{Rk,s,fi}	[kN]	2,4	2,6	2,8	4,6	4	,7	7,8	8	,1	
	R90	F _{Rk,s,fi}	[kN]	1,6	1,6	1,9	3,1	3	,2	5,3	5	,5	
Characteristic	R120	F _{Rk,s,fi}	[kN]	1,2	1,2	1,5	2,4	2	,5	4,0	4	,3	
resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]	14,6	15,9	17,2	35,2	35	5,6	78,9	79	9,8	
	R60	M ⁰ _{Rk,s,fi}	[Nm]	11,0	11,7	13,0	26,6	27	7,1	59,6	60),7	
	R90	M ⁰ _{Rk,s,fi}	[Nm]	7,4	7,4	8,8	18,0	18	3,6	40,2	41	L,7	
	R120	M ⁰ _{Rk,s,fi}	[Nm]	5,7	5,3	6,8	13,7	14	1,4	30,6	32	32,1	
Pull-out failur	e												
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5	2,3	3,0	2,4	4,0	4,9	3,1	4,8	7,8	
	R120	N _{Rk,p,fi}	[kN]	1,2	1,8	2,4	1,9	3,2	3,9	2,5	3,8	6,3	
Concrete cone	failure												
Characteristic resistance	R30 R60 R90	N ^O _{Rk,c,fi}	[kN]	1,8	2,6	4,0	2,0	4,7	6,6	3,0	6,4	14,4	
,	R120	N ⁰ _{Rk,c,fi}	[kN]	1,4	2,1	3,2	1,6	3,8	5,3	2,4	5,1	11,5	
Edge distance													
	R30 to R120	C _{cr,fi}	[mm]					$2 h_{\text{ef}}$					
In case of fire at	tack from mo	re than o	ne side,	the mini	mum ed	ge dista	nce shall	be ≥ 30	0 mm.				
Anchor spacing													
	R30 to R120	S _{cr,fi}	[mm]					2 c _{cr,fi}					
Concrete pry-	out failure												
	R30 to R120	k	[-]	1,0	2,	,0	1,0			2,0			
The anchorage	depth has to b	e increas	ed for w	et concr	ete by a	t least 30	0 mm co	mpared	to the gi	iven valu	ie.		

Hilti Screw anchor HUS3	
Performances For resistance to fire	Annex C6

Table C6: Product performance for resistance to Fire

Anchor HUS3-C		8		10						
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth h _{nom} [mm]					60	70	55	75	85	
Steel failure for tension	and shear lo	ad (F _{Rk,s,}	, _{fi} = N _{Rk,}	s,fi = V _{Rk,}	s,fi)					
	R30	F _{Rk,s,fi}	[kN]		0,5			1,2		
	R60	F _{Rk,s,fi}	[kN]		0,4			1,0		
	R90	F _{Rk,s,fi}	[kN]		0,3			0,8		
Chausatauistia usaistausa	R120	F _{Rk,s,fi}	[kN]		0,2			0,6		
Characteristic resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]		0,6			1,7		
	R60	M ⁰ _{Rk,s,fi}	[Nm]		0,5			1,5		
	R90	M ⁰ _{Rk,s,fi}	[Nm]		0,4			1,1		
	R120	M ⁰ _{Rk,s,fi}	[Nm]		0,3		0,9			
Pull-out failure										
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5	2,3	3,0	2,4	4,0	5,0	
	R120	N _{Rk,p,fi}	[kN]	1,2	1,8	2,4	1,9	3,2	4,0	
Concrete cone failure										
Characteristic resistance	R30 R60 R90	N ⁰ _{Rk,c,fi}	[kN]	1,8	2,6	4,0	2,0	4,7	6,6	
	R120	N ⁰ _{Rk,c,fi}	[kN]	1,5	2,1	3,2	1,6	3,8	5,3	
Edge distance										
	R30 to R120	C _{cr,fi}	[mm]	2 h _{ef}						
In case of fire attack from	more than one	side, the	e minim	ım edge	distance	shall be	e ≥ 300 n	nm.		
Anchor spacing										
R30 to R120 s _{cr,fi} [mm] 2 c _{cr,fi}										
Concrete pry-out failure	e									
	R30 to R120	k	[-]	1,0 2,0			1,0 2,0			
The anchorage depth has	to be increased	for wet	concrete	e by at le	ast 30 m	nm comp	pared to	the give	n value.	

Hilti Screw anchor HUS3	
Performances For resistance to fire	Annex C7

Table C7: Displacements under tension load HUS3-6

Anchor size HU	H, C, A. I	P, PS				
Nominal embed	ment depth	h _{nom}	[mm]	55		
	Tension Load	N	[kN]	2,	4	
Cracked concrete		δ_{N0}	[mm]	0,1		
C20/25 to C50/60	Displacement	$\delta_{N\infty}$	[mm]	0,6		
C50/60		$\delta_{\text{N,seis}}$	[mm]	-		
Non-cracked	Tension Load	N	[kN]	3,6	3,0	
concrete C20/25 to	D'auta a mant	δ_{N0}	[mm]	0,2		
C50/60	Displacement	$\delta_{N\infty}$	[mm]	0,3		

Table C8: Displacements under tension load HUS3-8, 10, 14

Anchor size HUS3					8		10			14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth				50	60	70	55	75	85	65	85	115
Cracked concrete C20/25 to C50/60	Tension Load	N	[kN]	4,3	5,7	7,6	5,7	9,5	13,2	8,3	13,0	21,2
	Displacement	δ_{N0}	[mm]	0,3	0,4	0,3	0,4	0,4	0,4	0,6	0,5	0,5
		$\delta_{N\infty}$	[mm]	0,7	0,7	0,6	0,4	0,4	0,5	0,9	1,2	1,0
		$\delta_{\text{N,seis}}$	[mm]	-	-	0,6	-	-	0,9	-	-	1,3
Non- cracked concrete C20/25 to C50/60	Tension Load	N	[kN]	6,6	8,9	11,8	8,7	14,8	20,5	12,9	20,1	32,8
	Displacement	δ_{NO}	[mm]	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,3
		δ_{N^∞}	[mm]		0,3			0,2	S		0,5	

Table C9: Displacements under shear load HUS3-6, 8, 10 and 14

Anchor size HUS3				6	8			10			14		
				h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth			55	50	60	70	55	75	85	65	85	115	
Cracked concrete C20/25 to C50/60	Shear Load	٧	[kN]	6,0	8,1 1			13,3	13,3		21,4		
	Displacement	δ_{V0}	[mm]	1,9	2,5	3,4	2,9	3,8	3,7	3,2	3,6	3,2	2,4
		$\delta_{V^{\infty}}$	[mm]	2,8	3,7	5,1	4,4	5,7	5,5	4,9	5,4	6,9	3,5
		$\delta_{\text{V,seis}}$	[mm]	-	-	-	0,6	-	-	0,9	-	-	1,3

Hilti Screw anchor HUS3	
Performances	Annex C8
Displacements	